PROBLEM SET \#6

Issued: Tuesday, March 3, 2009
Due: Tuesday, March 10, 2009, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. For the high-swing cascode mirror shown in Figure PS6-1 answer the following questions:
(a) Calculate W such that the minimum output voltage for which both M_{1} and M_{2} are in saturation is 0.5 V . Assume that $M_{3}-M_{5}$ can provide appropriate gate biases for M_{1} and M_{2}.
(b) Calculate W_{5} in order to achieve the minimum output voltage calculated in (a).
(c) Briefly explain the function of M_{4}.
(d) What is the output resistance of this current source?
(e) What is the change in $I_{\text {OUT }}$ for $\Delta V_{O U T}=1 \mathrm{~V}$?
(f) What is the resistance seen by the ideal current source $I_{I N}$ that biases M_{3} and M_{4} ?
(g) Calculate input voltages $V_{I N I}$ and $V_{I N 2}$.
(h) Replace transistors M_{5} and M_{6} with one diode connected device. What is the W of the new device?
$I_{I N}=100 \mu A, \quad L=1 \mu m \quad C_{o x}=5 \frac{f F}{\mu m^{2}}, \quad \mu_{n}=450 \frac{\mathrm{~cm}^{2}}{V s}, \quad V_{t h 0}=0.6 \mathrm{~V}, \quad \lambda=0.02 \mathrm{~V}^{-1}, \quad \gamma=0$

Figure PS6-1
2. Use half-circuit concepts to determine the differential-mode and common-mode gain of the circuit shown in Figure PS6-2. Neglect r_{o}, r_{u} and r_{b}. Then calculate the differential-mode and common mode input resistance.

Figure PS6-2

Figure PS6-3
3. Use half circuit analysis to determine (i) the differential-mode gain $A_{d m}$, (ii) the common-mode gain $A_{c m}$, (iii) the common-mode input to differential-mode output gain $A_{c m-d m}$, and (iv) the differential-mode input to common-mode output gain $A_{d m-c m}$ for a resistively loaded differential pair shown in Figure PS6-3 with mismatched resistive loads, R_{1} and R_{2}. Assume that $R_{l}=10.1 \mathrm{k} \Omega, R_{2}=9.9 \mathrm{k} \Omega$, also assume $r_{o l}=r_{o 2}=\infty$, and $R_{\text {tail }}=1 \mathrm{M} \Omega$. Use the following process parameters: $t_{o x}=8 \mathrm{~nm}, \mu_{n}=450 \mathrm{~cm}^{2} / \mathrm{VS}, L_{d}=0.09 \mu \mathrm{~m}, W=10 \mathrm{um}, L=1 \mathrm{um}$. Then calculate the input offset voltage assuming a W / L mismatch of 2 percent besides the resistive load mismatch. Ignore the difference of the device threshold in your offset calculation.
4. This problem concerns the actively loaded MOS amplifier shown in Figure PS6-4.
(a) Design the amplifier to achieve a differential small signal gain of 200. Bias M_{1} and M_{2} with $100 \mu \mathrm{~A}$ of current each. The maximum output swing should be 2 V peak-to-peak. Do not use overdrive voltages lower than 150 mV . Choose W_{5} and W_{6} so that the bias currents of M_{5} and M_{6} are exactly the same at the quiescent point. Use the smallest channel lengths that satisfy the gain requirements. All transistors should have the same channel lengths.
(b) If the desired output voltage at the quiescent point is in the middle of output signal range, what is the systematic input referred voltage offset of this amplifier?
(c) Due to manufacturing imperfections threshold voltages, channel widths and channel lengths can differ from designed by $\Delta V_{t h}, \Delta W, \Delta L$, where $\left|\Delta V_{t h}\right|<10 \mathrm{mV},|\Delta W|<5 \mathrm{~nm}$, $|\Delta L|<5 \mathrm{~nm}$. What is the worst case input referred voltage offset due to mismatches?

$$
\begin{aligned}
& V_{D D}=1.8 V, V_{S S}=-1.8 V, V_{t h 0, n}=V_{t h 0, p}=0.5 V, \alpha_{N}=\frac{d X_{d}}{d V_{D S}}=0.02 \frac{\mu m}{V}, \alpha_{N}=\frac{d X_{d}}{d V_{S D}}=0.04 \frac{\mu m}{V}, \\
& \mu_{n} C_{o x}=250 \frac{\mu A}{V^{2}}, \mu_{p} C_{o x}=100 \frac{\mu A}{V^{2}}, \gamma=0, L_{d}=0
\end{aligned}
$$

Figure PS6-4

