PROBLEM SET #8

Issued: Tuesday, March 31, 2009

Due: Tuesday, April 7, 2009, 8:00 p.m. in the EE 140 homework box in 240 Cory

- 1. This problem concerns the class B output stage shown in Figure PS8-1(a). The input signal is $v_{IN} = V_m \sin(2\pi f_{in}t)$.
 - (a) If the load is resistive $Z_L = R$ sketch timing diagrams of the output voltage $v_{OUT}(t)$, the load current $i_L(t)$, and collector currents $i_{C1}(t)$ and $i_{C2}(t)$.
 - **(b)** Repeat **(a)** if the load is capacitive $Z_L = \frac{1}{j\omega C}$.
 - (c) The output stage is connected in a feedback loop as shown in Figure PS8-1(b). Sketch timing diagrams of $v_{OUT}(t)$, $i_L(t)$, $i_{C1}(t)$, $i_{C2}(t)$, and $v_A(t)$ if $Z_L = R$. Assume amplifier A is ideal.
 - (**d**) Repeat (**c**) if $Z_L = \frac{1}{j\omega C}$.

Draw only one period in steady state. Clearly mark all important points in your diagrams.

$$V_m = 9V$$
, $f_{in} = 1kHz$, $C = 100 \, pF$, $R = 500\Omega$, $|V_{BE,on}| = 0.7V$, $V_{CC} = V_{EE} = 10V$

Figure PS8-1

2. The slew rate of the circuit in Fig. PS8-2 is to be increased by using two 10 k Ω resistors placed at the emitters of Q_l and Q_2 . If the same unity-gain frequency is to be achieved, calculate the new value of compensation capacitor required and the improvement in slew rate.

- 3. Razavi, Chapter 9: Problem 9.19.
- 4. Razavi, Chapter 9: Problem 9.20.