PROBLEM SET \#9

Issued: Tuesday, April 7, 2009
Due: Tuesday, April 14, 2009, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. An amplifier has low-frequency forward gain of 40,000 , and its transfer function has three negative real poles with magnitudes $2 \mathrm{kHz}, 200 \mathrm{kHz}$, and 4 MHz .
(a) If this amplifier is connected in a feedback loop with a constant feedback factor f and with low-frequency gain $A_{0}=400$, estimate the phase margin;
(b) Repeat (a) if $A_{0}=200$ and then 100.
2. The amplifier $a(s)$ is has DC gain of 10,000 and three real negative poles. The pole frequencies of the first and the third pole are 1 kHz and 200 MHz , respectively.
(a) If $R_{1}=R_{2}$ find the location of the second pole such that the feedback amplifier shown in Figure PS9-2 is stable with a phase margin of 60°. Neglect the input impedance of the amplifier.
(b) Write the transfer function in as a function of the complex variable s and draw Bode plots for the open-loop amplifier gain $a(s)$ and the closed-loop gain $A(s)$.
(c) What is the new phase margin if:
i. In addition to the three poles the amplifier $a(s)$ has one real right half-plane zero at the frequency of the second pole.
ii. In addition to the three poles the amplifier $a(s)$ has one real left half-plane zero at the frequency of the second pole.
iii. The closed-loop amplifier $A(s)$ is configured as a unity gain buffer.
iv. $R_{1}=9 R_{2}$.

Figure PS9-2
3. Razavi, Chapter 10: Problem 10.4.
4. In the amplifier shown in Figure PS9-4 transistors $M_{3}-M_{8}$ are biased with $V_{o v}=200 \mathrm{mV}$. The gates of M_{3} and M_{4} are biased to allow the maximum undistorted sinusoidal signal at the output. Calculate all currents, channel widths and the value of capacitor C_{c} so that the amplifier has a DC gain of 20, a unity gain frequency of 50 MHz , and a phase margin of 60° when placed in unity gain closed-loop feedback. All transistors have the same channel length. Neglect all parasitic capacitances in this problem.

$$
\begin{aligned}
& V_{D D}=3 V, R_{L}=10 \mathrm{k} \Omega, C_{L}=5 p F \\
& V_{t h 0, n}=0.5 \mathrm{~V}, \mu_{n} C_{o x}=250 \frac{\mu \mathrm{~A}}{V^{2}}, L=0.5 \mu m, \lambda=0, \gamma=0, L_{d}=0
\end{aligned}
$$

Figure PS9-4

