Lecture 1w: Admin & Overview

Lecture 1: Admin & Overview

- · Announcements:
- · EE 140: Analog Integrated Circuits
- · <u>Instructor</u>: Prof. Clark T.-C. Nguyen
- · Webcast: wireless mic
- http://webcast.berkeley.edu/course_details_new.ph p?seriesid=2011-B-25461&semesterid=2011-B
- · Office Hour Changes?:
 - No changes requested
- · For the course website, just google ee140
 - The website should be up and running in a couple of days
- I will be traveling this coming Thursday and next week on Tuesday
 - STA's will lecture on these days; it's review material
 - ♥I will be out of town, so will not be able to hold office hours thru Wednesday, next week
- Discussion sections start next week
- -----
- · Lecture Topics:
 - **♥** Review
 - -Ideal Op Amps
 - -Non-Ideal Op Amps
 - ♥ Op Amp Examples
- -----
- · Go though
 - ♥ Course information sheet
 - **♥** Syllabus
 - SGrading Information and Policy
- · Class account sheets handed out in class

Lecture 1w: Admin & Overview

Lecture 1w: Admin & Overview

- · Non-Ideal Op Amps:
- Actual op amps, of course, are not ideal; rather, they ...
 - Have finite gain, A.
 - \$\text{Have finite bandwidth, BW}
 - ⇔ Have finite input resistance, R_i
 - ♦ Have finite input capacitance, C_i
 - \$\text{Have finite output resistance, Ro}
 - & Generates noise
 - Have input bias currents (because R_i is not infinite)
 - \$ Have input offset currents and voltages
 - ♦ Have finite slew rate
 - \$ Have finite output swing
- · All of the above can be temperature dependent!
- A major objective of this class is understand what gives rise to the above non-idealities and to teach design strategies to get around them
- Then look at op amp usage examples using prepared pages