Issued: Thursday, Jan.24, 2013
Due (at 8 a.m.): Friday, Feb. 1, 2013, in the EE 140/240A HW box near 125 Cory.

1. Calculate the built-in potential, depletion layer depths, and maximum field in an abrupt pn junction in silicon with doping densities $N_{A}=8 \times 10^{15}$ atoms $/ \mathrm{cm}^{3}$ and $N_{D}=$ 10^{17} atoms $/ \mathrm{cm}^{3}$. Assume that the edges of the depletion region are sharply defined.
(a) Assume a reverse bias of 4 V .
(b) Repeat (a) for zero external bias and 0.4 V forward bias.
2. Calculate the zero-bias junction capacitance for the example in Problem 1, and also calculate the value at 4 V reverse bias and 0.4 V forward bias. Assume a junction area of $2 \times 10^{-5} \mathrm{~cm}^{2}$.
3. Derive and sketch the complete small-signal equivalent circuit for a bipolar transistor biased so that $I_{C}=0.2 \mathrm{~mA}, V_{C B}=3 \mathrm{~V}, V_{C S}=4 \mathrm{~V}$. Device parameters are: $C_{j e 0}=20 \mathrm{fF}, C_{\mu 0}=$ $10 \mathrm{fF}, C_{C S 0}=20 \mathrm{fF}, \beta_{0}=100, \tau_{F}=15 \mathrm{ps}, \eta=10^{-3}, r_{b}=200 \Omega, r_{c}=100 \Omega, r_{e x}=4 \Omega$, and $r_{\mu}=5 \beta_{0} r_{o}$. Assume $\psi_{0}=0.55 \mathrm{~V}$ for all junctions.
4. An NMOS transistor has parameters $W=10 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, k^{\prime}=190 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}, \lambda=$ $0.024 \mathrm{~V}^{-1}, t_{o x}=80 \dot{\mathrm{~A}}, \phi_{f}=0.3 \mathrm{~V}, V_{t 0}=0.6 \mathrm{~V}$, and $N_{A}=5 \times 10^{15} \mathrm{~cm}^{-3}$. Ignore velocity saturation effects.
(a) Sketch the $I_{D}-V_{D S}$ characteristics for $V_{D S}$ from 0 to 3 V and $V_{G S}=0.5 \mathrm{~V}, 1.5 \mathrm{~V}$ and 3 V assume $V_{S B}=0$.
(b) Sketch the $I_{D}-V_{G S}$ characteristics for $V_{D S}=2 \mathrm{~V}$ as $V_{G S}$ varies from 0 to 2 V with $V_{S B}=$ $0,0.5 \mathrm{~V}$, and 1 V .
(c) Derive and sketch the complete small-signal equivalent circuit for the device with $V_{G S}=1 \mathrm{~V}, V_{D S}=3 \mathrm{~V}$ and $V_{S B}=1 \mathrm{~V}$. Use $\psi_{0}=0.7 \mathrm{~V}, C_{s b 0}=C_{d b 0}=20 \mathrm{fF}$, and $C_{g b}=5 \mathrm{fF}$. Overlap capacitance from gate to source and gate to drain is 2 fF .
(d) Under the bias condition in (c), calculate the frequency of unity current gain of this device.
5. In the circuit shown below, find $I_{\text {out }}$ and $V_{\text {out }}$ for (a) $R_{x}=4 \mathrm{k} \Omega$, (b) $R_{x}=2 \mathrm{k} \Omega$, and (c) $R_{x}=1 \mathrm{k} \Omega$. Assume $V_{B E(o n)}=0.7 \mathrm{~V}, V_{C E(s a t)}=0.2 \mathrm{~V}$, and $\beta \rightarrow \infty$.

6. Calculate the DC operating points including the current flowing through each branch and DC voltage at each node for the circuits shown:

