PROBLEM SET #3

Issued: Thursday, Feb.7, 2013

Due (at 8 a.m.): Friday, Feb. 15, 2013, in the EE 140/240A HW box near 125 Cory.

- 1. Referring to the multistage amplifier circuit shown in Fig. PS3.1:
 - (a) Calculate the DC operating points including the current flowing through each branch and DC voltage at each node.
 - (**b**) Calculate transistor small-signal parameters (i.e. g_m , r_{π} , r_o , C_{π} , $C_{\mu\nu}$, C_{gs} , C_{gd})
 - (c) Provide expressions and calculate the numerical values for the input resistance, R_{in} ; output resistance, R_{out} ; first stage gain, v_{o1}/v_s ; second stage gain, v_{o2}/v_{o1} ; third stage gain, v_{out}/v_{o2} and total gain, v_{out}/v_s .
 - (d) Estimate the low frequency cut-off f_L and high frequency cut-off f_H of the amplifier.

BJT parameters:

$$\beta$$
=100, V_A =50V, $V_{BE(on)}$ =0.7V, $V_{CE(SAT)}$ =0.2V, τ_F =150ps, C_{je} =50fF, C_{μ} =1pF, V_T =25mV.

MOS parameters:

 $V_{th0}=0.5$ V, k=165.3µA/V², W/L=20µm/1µm, $\lambda=0.05$ V⁻¹, $C_{ox}=30$ µF/cm², $C_{ol}=1$ pF, $\gamma=0$.

Fig. PS3.1

2. For the small-signal circuits shown in Fig. PS3.2, assume all transistors are identical and have the following parameters:

 $I_D = 2 \text{ mA}, W = 50 \text{ }\mu\text{m}, L_{drwn} = 130 \text{ nm}, L_d = 15 \text{ nm}, X_d = 0, k_p' = 200 \text{ }\mu\text{A/V}^2, \gamma = 0, \lambda = 0, C_{ox} = 15 \text{ }\text{fF/}\mu\text{m}^2, C_{sb} = C_{db} = 0.$

Given $R_S = 500 \Omega$, $R_L = 1 k\Omega$, and $C_L = 50 \text{ fF}$:

- (a) Calculate the mid-band, small-signal voltage gain v_o/v_i for each circuit.
- (b) Calculate and compare the high 3-dB cutoff frequencies of the two circuits.

Fig. PS3.2

3. For the both circuits depicted in PS3.3, calculate the input impedance, output impedance, and voltage gain, v_{out}/v_{in} . Assume $\beta = 100$ and $V_A = 50$ V. Repeat assuming $V_A = \infty$.

Fig. PS3.3

4. Design the common-base stage shown in Fig. PS3.4 for a voltage gain of 20 and an input impedance of 50 Ω using a transistor with $\beta = 100$ and $V_A = 20$ V. Assume a voltage drop of $10V_T = 260$ mV across R_E so that this resistor does not affect the input impedance significantly. Also, assume the current flowing through R_I is approximately 10 times the base current, and the lowest frequency of interest is 200Hz.

Fig. PS3.4