PROBLEM SET #4

Issued: Thursday, Feb.14, 2013

Due (at 8 a.m.): Friday, Feb. 22, 2013, in the EE 140/240A HW box near 125 Cory.

- 1. Fig. PS4.1 shows different active loads being used in analog circuits.
 - (a) Calculate the DC operating points including the current flowing through each branch and DC voltage at each node and transistor small-signal parameters (i.e. g_{m} , r_o , C_{gs} , C_{gd})
 - (b) Provide expressions and calculate the numerical values for the output resistance, R_{out} ; and gain, v_{out}/v_{in} .
 - (c) Estimate the high-frequency cut-off f_H of the amplifiers.

MOS parameters:

$$V_{GSI}=1V$$
, $/V_{th}/=0.5V$, $k_n = 200\mu A/V^2$, $k_p = 100\mu A/V^2$, $\lambda = 0.05V^{-1}$, $V_{DD}=3V$, $V_{BI}=2.7V$,
 $V_{B2}=V_{B3}=1.5V$, $C_{ox}=4fF/\mu m^2$, $C_{ol}=3fF$, $C_{sb}=C_{db}=5fF$;
 $(W/L)_1=10\mu m/0.25\mu m$, $(W/L)_{2,3}=2.5\mu m/0.25\mu m$, $(W/L)_4=10\mu m/0.25\mu m$;
 $(W/L)_{5,6}=5\mu m/0.25\mu m$, $(W/L)_7=4.5\mu m/0.25\mu m$, $(W/L)_8=0.5\mu m/0.25\mu m$.

Note that the active load in circuit (iii) is depletion-mode NMOS and hence its threshold voltage is negative (i.e. V_{th4} =-0.5V).

Fig. PS4.2

3. Determine the value of R_P in the circuit of Fig. PS4.3 such that $I_I = I_{REF}/2$. With this choice of R_p , does I_I change if the threshold voltage of both transistors increases by ΔV ?

Fig. PS4.3

- **4.** Fig. PS4.4 depicts a simple amplifier circuit using active load. Assume that the output voltage is set at 1V.
 - (a) Calculate the DC operating points including the current flowing through each branch and DC voltage at each node.
 - (b) Calculate transistor small-signal parameters (i.e. g_{m} , g_{mb} , r_o , C_{gs} , C_{gd}).
 - (c) Provide expressions and calculate the numerical values for the output resistance, R_{out} ; and gain, v_{out}/v_{in} .
 - (d) Estimate the high-frequency cut-off f_H of the amplifier.

MOS parameters: (for both NMOS and PMOS, unless otherwise stated)

 $/V_{th} = 0.5 \text{V}, k_n = 200 \mu \text{A}/\text{V}^2, k_p = 100 \mu \text{A}/\text{V}^2, V_{DD} = 2.5 \text{V},$

 $\lambda = 0.05 \text{V}^{-1}$, $\chi = 0.1$, $C_{ox} = 5 \text{fF}/\mu\text{m}^2$, $C_{ol} = 3 \text{fF}$, $C_{sb} = C_{db} = 5 \text{fF}$

 $(W/L)_1 = 2.25 \mu m/0.25 \mu m, (W/L)_2 = 4.5 \mu m/0.25 \mu m, (W/L)_{3,4} = 3.75 \mu m/0.25 \mu m,$

 $(W/L)_{5,6}=11.25\mu m/0.25\mu m, (W/L)_7=37.5\mu m/0.25\mu m, (W/L)_8=7.5\mu m/0.25\mu m,$

 $(W/L)_9 = 6.25 \mu m/0.25 \mu m, (W/L)_{10} = 12.5 \mu m/0.25 \mu m, (W/L)_{11} = 11.25 \mu m/0.25 \mu m.$

<u>*Hint*</u>: Since the current into the transistor M_1 is fixed by the ideal current source, there is no change at its gate voltage, i.e. it is *ac* ground. You can assume the same is true for M_3 and M_4 , too.

Fig. PS4.4