PROBLEM SET \#4

Issued: Thursday, Feb.14, 2013
Due (at 8 a.m.): Friday, Feb. 22, 2013, in the EE 140/240A HW box near 125 Cory.

1. Fig. PS4.1 shows different active loads being used in analog circuits.
(a) Calculate the DC operating points including the current flowing through each branch and DC voltage at each node and transistor small-signal parameters (i.e. $g_{m}, r_{o}, C_{g s}, C_{g d}$)
(b) Provide expressions and calculate the numerical values for the output resistance, $R_{\text {out }}$; and gain, $v_{\text {out }} / v_{i n}$.
(c) Estimate the high-frequency cut-off f_{H} of the amplifiers.

MOS parameters:

$$
\begin{aligned}
& V_{G S I}=1 \mathrm{~V},\left|V_{t h}\right|=0.5 \mathrm{~V}, k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.05 \mathrm{~V}^{-1}, V_{D D}=3 \mathrm{~V}, V_{B 1}=2.7 \mathrm{~V}, \\
& V_{B 2}=V_{B 3}=1.5 \mathrm{~V}, C_{o x}=4 \mathrm{fF} / \mu \mathrm{m}^{2}, C_{o l}=3 \mathrm{fF}, C_{s b}=C_{d b}=5 \mathrm{fF} ; \\
& (W / L)_{l}=10 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{2,3}=2.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{4}=10 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m} ; \\
& (W / L)_{5,6}=5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{7}=4.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{8}=0.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m} .
\end{aligned}
$$

Note that the active load in circuit (iii) is depletion-mode NMOS and hence its threshold voltage is negative (i.e. $V_{t h 4}=-0.5 \mathrm{~V}$).

Fig. PS4. 1
2. Due to a manufacturing error, resistor R_{P} has appeared in series with the base of $Q_{\text {REF }}$ in Fig. PS4.2. If I_{l} is 10% greater than its nominal value, express the value of R_{P} in terms of other circuit parameters. Assume $Q_{R E F}$ and Q_{I} are identical.

Fig. PS4. 2
3. Determine the value of R_{P} in the circuit of Fig. PS4.3 such that $I_{l}=I_{R E F} / 2$. With this choice of R_{p}, does I_{I} change if the threshold voltage of both transistors increases by ΔV ?

Fig. PS4. 3
4. Fig. PS4.4 depicts a simple amplifier circuit using active load. Assume that the output voltage is set at 1 V .
(a) Calculate the DC operating points including the current flowing through each branch and DC voltage at each node.
(b) Calculate transistor small-signal parameters (i.e. $g_{m}, g_{m b}, r_{o}, C_{g s}, C_{g d}$).
(c) Provide expressions and calculate the numerical values for the output resistance, $R_{\text {out }}$; and gain, $v_{\text {out }} / v_{i n}$.
(d) Estimate the high-frequency cut-off f_{H} of the amplifier.

MOS parameters: (for both NMOS and PMOS, unless otherwise stated)
$\left|V_{t h}\right|=0.5 \mathrm{~V}, k_{n}{ }^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}{ }^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{D D}=2.5 \mathrm{~V}$,
$\lambda=0.05 \mathrm{~V}^{-1}, \chi=0.1, C_{o x}=5 \mathrm{fF} / \mathrm{mm}^{2}, C_{o l}=3 \mathrm{fF}, C_{s b}=C_{d b}=5 \mathrm{fF}$
$(W / L)_{l}=2.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{2}=4.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{3,4}=3.75 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$,
$(W / L)_{5,6}=11.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{7}=37.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{8}=7.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$,
$(W / L)_{9}=6.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{10}=12.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{11}=11.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$.
Hint: Since the current into the transistor M_{l} is fixed by the ideal current source, there is no change at its gate voltage, i.e. it is $a c$ ground. You can assume the same is true for M_{3} and M_{4}, too.

Fig. PS4.4

