PROBLEM SET \#5

Issued: Thursday, Feb.21, 2013
Due (at 8 a.m.): Friday, Mar. 1, 2013, in the EE 140/240A HW box near 125 Cory.

1. In the circuit shown in Fig. PS5.1, a source follower using a wide transistor M_{4} and a small bias current is inserted in series with the gate of M_{3} so as to bias M_{2} at the edge of saturation. Assuming $M_{0}-M_{3}$ are identical and $\lambda \neq 0$, estimate the mismatch between $I_{o u t}$ and $I_{R E F}$ if:
(a) $\gamma=0$
(b) $\gamma \neq 0$

Fig. PS5. 1
2. Compute the error, defined as $\left(\mathrm{I}_{\text {REF }}-I_{\text {Copy }}\right) / I_{\text {REF }}$, in $I_{\text {copy } 1}$ and $I_{\text {copy } 2}$ for both circuits in Fig. PS5.2. Assume $\beta=20$.

B)

Fig. PS5. 2
3. Fig. PS5.3(A) shows a common source amplifier that is biased using a current mirror. Assume that R_{B} and C_{B} have infinite values, and that the transistors have the following parameters:
$L=120 \mathrm{~nm}, V_{\text {th } 0}=0.5 \mathrm{~V}, k_{n}{ }^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0$.
Given $V_{D D}=1.5 \mathrm{~V}, W_{I}=3 \mu \mathrm{~m}, I_{R E F}=100 \mu \mathrm{~A}$, and $R_{L}=1 \mathrm{k} \Omega$:
(a) Assuming $\lambda=0$, size M_{2} (i.e. find W_{2}) so that the amplifier has a mid-band, small-signal voltage gain $v_{o} / v_{i}=5$. What is the bias current $I_{D 2}$ in this case?
(b) Keep the same size for M_{2} that you found in part (a), but now let $\lambda=0.2 \mathrm{~V}^{-1}$. What is the new bias current $I_{D 2}$? What is the new small-signal voltage gain? Explain the source of mismatch with your results from part (a).
(c) In order to more accurately control the bias current, we could add a cascode device to the amplifier, as shown in Fig. PS5.3(B). Find the bias voltage V_{B} that will make the bias current $I_{D 2}$ match what was found in part (a) exactly. Assume $(W / L)_{3}=(W / L)_{2}$, and $\lambda=$ $0.2 \mathrm{~V}^{-1}$ still.

(A)

(B)

Fig. PS5. 3
4. Fig. PS5.4 depicts a self-biasing V_{t} reference circuit which is capable of providing a current reference independent of biasing voltage.
(a) Provide expressions for the DC output current $I_{O U T}$ and biasing currents $I_{B I A S I}$ and $I_{B I A S 2}$ in terms of circuit elements and transistor parameters and calculate numerical values. Ignore body effect and channel length modulation.
(b) Calculate the ratio of small-signal variations in $I_{O U T}$ to small-signal variations in $V_{D D}$ at low frequencies. Ignore the body effect but include finite transistor r_{o} in this calculation.

MOS parameters:
$\left|V_{t h}\right|=0.5 \mathrm{~V}, k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.05 \mathrm{~V}^{-1}, V_{D D}=3 \mathrm{~V}, R=1.75 \mathrm{k} \Omega$,
$(W / L)_{l}=12.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{2}=6.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{3}=31.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$,
$(W / L)_{4}=6.25 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{5}=12.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m},(W / L)_{6}=15.5 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$.

Fig. PS5. 4

