EE 140 / EE 240A

PROBLEM SET #5

Issued: Thursday, Feb.21, 2013

Due (at 8 a.m.): Friday, Mar. 1, 2013, in the EE 140/240A HW box near 125 Cory.

1. In the circuit shown in Fig. PS5.1, a source follower using a wide transistor M_4 and a small bias current is inserted in series with the gate of M_3 so as to bias M_2 at the edge of saturation. Assuming $M_0 - M_3$ are identical and $\lambda \neq 0$, estimate the mismatch between I_{out} and I_{REF} if:

(a) $\gamma = 0$

(b) $\gamma \neq 0$

Fig. PS5.1

2. Compute the error, defined as $(I_{REF}-I_{Copy})/I_{REF}$, in I_{copy1} and I_{copy2} for both circuits in Fig. PS5.2. Assume $\beta = 20$.

Fig. PS5.2

3. Fig. PS5.3(A) shows a common source amplifier that is biased using a current mirror. Assume that R_B and C_B have infinite values, and that the transistors have the following parameters:

 $L = 120 \text{ nm}, V_{th0} = 0.5 \text{ V}, k_n' = 200 \text{ }\mu\text{A}/\text{V}^2, \gamma = 0.$

Given $V_{DD} = 1.5$ V, $W_I = 3 \mu m$, $I_{REF} = 100 \mu A$, and $R_L = 1 k\Omega$:

- (a) Assuming $\lambda = 0$, size M_2 (i.e. find W_2) so that the amplifier has a mid-band, small-signal voltage gain $v_0/v_i = 5$. What is the bias current I_{D2} in this case?
- (b) Keep the same size for M_2 that you found in part (a), but now let $\lambda = 0.2 \text{ V}^{-1}$. What is the new bias current I_{D2} ? What is the new small-signal voltage gain? Explain the source of mismatch with your results from part (a).
- (c) In order to more accurately control the bias current, we could add a cascode device to the amplifier, as shown in Fig. PS5.3(B). Find the bias voltage V_B that will make the bias current I_{D2} match what was found in part (a) exactly. Assume $(W/L)_3 = (W/L)_2$, and $\lambda = 0.2 \text{ V}^{-1}$ still.

Fig. PS5.3

- 4. Fig. PS5.4 depicts a self-biasing V_t reference circuit which is capable of providing a current reference independent of biasing voltage.
 - (a) Provide expressions for the DC output current I_{OUT} and biasing currents I_{BIAS1} and I_{BIAS2} in terms of circuit elements and transistor parameters and calculate numerical values. Ignore body effect and channel length modulation.
 - (b) Calculate the ratio of small-signal variations in I_{OUT} to small-signal variations in V_{DD} at low frequencies. Ignore the body effect but include finite transistor r_o in this calculation.

MOS parameters:

 $/V_{th}/=0.5$ V, $k_n = 200$ μA/V², $k_p = 100$ μA/V², $\lambda = 0.05$ V⁻¹, $V_{DD}=3$ V, R=1.75kΩ, $(W/L)_1=12.5$ μm/0.25μm, $(W/L)_2=6.25$ μm/0.25μm, $(W/L)_3=31.25$ μm/0.25μm, $(W/L)_4=6.25$ μm/0.25μm, $(W/L)_5=12.5$ μm/0.25μm, $(W/L)_6=15.5$ μm/0.25μm.

