PROBLEM SET \#8

Issued: Thursday, Mar. 14, 2013
Due (at 8 a.m.): Tuesday, Mar. 19, 2013, in the EE 140/240A HW box near 125 Cory.

1. In the circuit of Fig. PS8.1, assume $(W / L)_{1-4}=100 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, I_{S S}=1 \mathrm{~mA}, V_{b}=1.4 \mathrm{~V}, V_{T H}=$ $0.7 \mathrm{~V}, \lambda=0.2 \mathrm{~V}^{-1}, K_{n}{ }^{\prime}=60 \mu \mathrm{~A} / \mathrm{V}^{2}, K_{p}{ }^{\prime}=30 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\gamma=0$.
(a) If $M_{5}-M_{8}$ are identical and have a length of $0.5 \mu \mathrm{~m}$, calculate their minimum width such that M_{3} operates in saturation.
(b) Calculate the maximum output voltage swing.
(c) What is the open-loop voltage gain?

Fig. PS8. 1
2. Consider the circuit in Fig. PS8.2. Assume the tail current source is ideal, and the transistors have parameters $\lambda=0.1 \mathrm{~V}^{-1}$ and $\gamma=0$. The transistors are nominally biased so that:
$I_{D-\text { nom }}=2 \mathrm{~mA}, g_{m 1,2}=10 \mathrm{mS}, g_{m 3,4,5,6}=5 \mathrm{mS}, g_{m 7,8}=10 \mathrm{mS}$.
Find the open-loop voltage gain $A=V_{\text {out }} / V_{\text {in }}$ for $A_{d m}, A_{c m}, A_{d m-c m}$, and $A_{c m-d m}$ wh en:
(a) The amplifier is perfectly matched.
(b) The amplifier is mismatched such that ($\left.I_{D-M 1,3,5,7}-I_{D-M 2,4,6,8}\right) / I_{D-n o m}=2 \%$, and $\left(g_{m 1,3,5,7-}\right.$ $\left.g_{m 2,4,6,8}\right) / g_{m, \text { nom }}=5 \%$.

Fig. PS8. 2

