Homework 11

Due: Monday, April 28, 2014 at 1pm

This is an individual assignment!

PROBLEM 1 (10pts):

Using feedback techniques, determine the type of feedback, the input and output impedance and current gain (i_{out}/i_{in}) of the circuit in Figure 1 using the two-port feedback analysis technique. Leave your answer in terms of variables $(g_{m1}, R_D, r_{o1}, \text{etc.})$ and assume $\gamma = 0$.

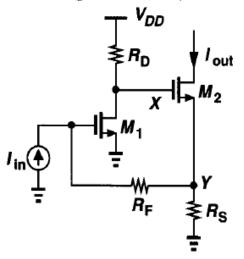


Figure 1

PROBLEM 2 (10pts):

Consider the circuit in Figure 2, where $(W/L)_{1-4} = 50/0.5$, $|I_{D1-4}| = 0.5$ mA, $V_{tn} = 0.7$ V, $V_{tp} = -0.8$ V, $k_n' = 134 \ \mu A/V^2$, $k_p' = 38 \ \mu A/V^2$, $\lambda_n = 0.1 \ V^{-1}$, $\lambda_p = 0.2 \ V^{-1}$, $R_1 = 805 \ \Omega$ and $R_2 = 3 \ k\Omega$.

Calculate the loop-gain T=af and compare to the value of the Return Ratio.

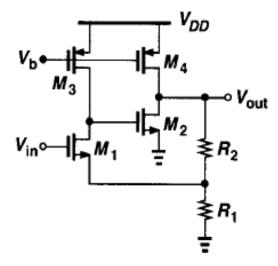


Figure 2

PROBLEM 3 (15pts):

A voltage-follower feedback circuit is shown in Figure 3. For the MOS transistor, $I_D = 0.5 \text{ mA}$, $k' = 180 \ \mu\text{A/V}^2$, $r_o = \infty$, W/L = 100, and $\gamma = 0$. For the op-amp, assume that $R_i = 1 \ M\Omega$, $R_o = 10 \ k\Omega$, and $a_v = 1,000$. Calculate input resistance, output resistance, loop transmission, and closed-loop gain:

(a) Using the formulas from two-port analysis.

(b) Using the formulas from return-ratio analysis.

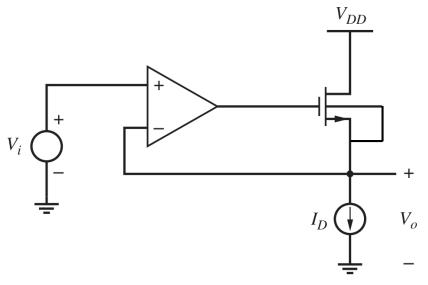


Figure 3

EXTRA PROBLEM FOR EE 240A STUDENTS: PROBLEM 4 (15pts):

In the circuit of Figure 4, suppose all resistors are equal to 2 k Ω and gm1 = gm2 = 5 mS. Assuming $\lambda = \gamma = 0$, calculate the closed-loop gain and output impedance.

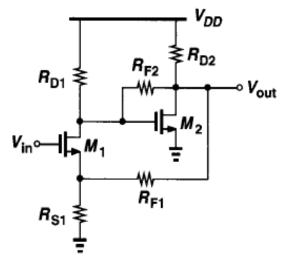


Figure 4