Homework 12

Due: Tuesday, May 6, 2014 at 1pm

This is an individual assignment!

PROBLEM 1 (20pts):

The integrator feedback circuit is shown in Figure 1, with op-amp described by a single-pole transfer function $A_{\nu}(s)=A_{0} /\left(1+s / \omega_{p}\right)$, and output resistance $R_{O a}$.
a) Derive the expression for loop-gain $T(s)=a f(\mathrm{~s})$. Determine the poles and zeros of $T(s)$.
b) Derive the expression for the return-ratio $R R(s)$. Determine the poles and zeros of $R R(s)$.

Sketch the amplitude and phase of $T(s)$ and $R R(s)$ for $R_{O a}=10 \mathrm{M} \Omega, A_{0}=1000, \omega_{p}=25 \mathrm{Mrad} / \mathrm{s}, C_{I N}$ $=2 \mathrm{pF}, C_{F}=20 \mathrm{pF}$.

Figure 1

PROBLEM 2 (20pts):

Assume the BiCMOS amplifier of Figure 2 is fed from a current source. Determine the feedback type. Calculate the low-frequency small-signal transresistance $v_{o} i_{i}$, and the input and output impedances of the circuit. Use the following parameters in your calculation:
$I_{S}=10^{-16} \mathrm{~A}, \beta_{F}=100, r_{b}=0, V_{A} \rightarrow \infty, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=0.6 \mathrm{~V}$, and $\lambda=0$.

Figure 2

EXTRA PROBLEM FOR EE 240A STUDENTS:

PROBLEM 3 (20pts):
A balanced monolithic amplifier is shown in Figure 3.
(a) Determine the feedback-type.
(b) If the common-mode input voltage is zero, calculate the bias current in each device. Assume that β_{F} is large.
(b) Calculate the voltage gain, input impedance, and output impedance of the circuit at low frequencies using the following data:
$\beta=100, r_{b}=0, V_{A}=\infty$, and $V_{B E}($ on $)=0.7 \mathrm{~V}$.

Figure 3

