Homework 3

Due: Friday, 14 February 2014 at 1pm
This is an individual assignment!
PROBLEM 1 (10pts):
For both circuits depicted in Fig. 1, calculate the input impedance, output impedance, and voltage gain, vout/Vin. Assume $\beta=100$ and $V_{A}=\infty$. Repeat assuming $V_{A}=100 \mathrm{~V}$.

Figure 1

PROBLEM 2 (10pts):

For the small-signal circuits shown in Fig. 2, assume all transistors are identical and have the following parameters: $I D=2 \mathrm{~mA}, W=10 \mu \mathrm{~m}, L_{d r w n}=130 \mathrm{~nm}, L_{d}=15 \mathrm{~nm}, X_{d}=0, k_{p}{ }^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0$, $\lambda=0, C_{o x}=15 \mathrm{fF} / \mu \mathrm{m}^{2}, C_{s b}=C d b=0$.
Given $R s=500 \Omega, R_{L}=1 \mathrm{k} \Omega$, and $C_{L}=100 \mathrm{fF}$:
(a) Calculate the DC small-signal voltage gain $v_{o} / v i$ for circuit in Fig. 2A.
(b) Calculate the low -3 dB cutoff frequency and mid-band voltage gain $v_{o} / v i$ for circuit in Fig. 2B.
(c) Calculate and compare the high 3-dB cutoff frequencies of the two circuits.

Figure 2

PROBLEM 3 (10pts):

The ac schematic of a wideband MOS current amplifier is shown in Fig. 3. The W/L of M_{2} is four times that of M_{1} and corresponding bias currents are $\mathrm{I}_{\mathrm{D} 1}=1 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{D} 2}=4 \mathrm{~mA}$. Calculate the lowfrequency, small-signal current gain io/ii and use the open-circuit time constant method to estimate the -3 dB cutoff frequency. M1: $C_{g d}=5 \mathrm{fF}, C_{g s}=20 \mathrm{fF}, C_{s b}=C_{d b}=9 \mathrm{fF}, \mathrm{V}_{\mathrm{ov}}=0.3 \mathrm{~V}$, and $r_{o}=\infty$. M2: $C_{g d}=20 \mathrm{fF}, C_{g s}=80 \mathrm{fF}, C_{s b}=C_{d b}=36 \mathrm{fF}, \mathrm{Vov}=0.3 \mathrm{~V}$, and $r_{o}=\infty$.

Figure 3

EXTRA PROBLEM FOR EE 240A STUDENTS:

PROBLEM 4 (20pts):

A multistage BiCMOS amplifier circuit is shown in Fig. 1:
(a) Calculate the DC current flowing through each branch and DC voltage at each node.
(b) Calculate transistor small-signal parameters (i.e. $g_{m}, r_{\pi}, r_{0}, C_{\pi}, C_{\mu}, C_{g} s, C_{g d}$)
(c) Provide expressions and calculate numeric values for the input resistance, Rin; output resistance, Rout; first stage gain, $v_{o l} / v_{s}$; second stage gain, $v_{o 2} / v_{o l}$; third stage gain, $v_{o u t} / V_{o 2}$ and total gain, $v_{o u t} / v_{s}$.
(d) Estimate the low frequency cut-off f_{L} and high frequency cut-off f_{H} of the amplifier using open and short-circuit time-constant methods.
BJT parameters: $\beta=100, V_{A}=100 \mathrm{~V}, V_{B E(o n)}=0.7 \mathrm{~V}, V_{C E(S A T)}=0.2 \mathrm{~V}, \tau_{F}=150 \mathrm{ps}, C_{j e}=50 \mathrm{fF}, C_{\mu}=1 \mathrm{pF}$, $V_{T}=25 \mathrm{mV}$.
MOS parameters: $V_{t h 0}=0.5 \mathrm{~V}, k=160 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}, \lambda=0.05 \mathrm{~V}^{-1}, C_{o x}=30 \mu \mathrm{~F} / \mathrm{cm}^{2}, C_{o l}=1 \mathrm{pF}, \gamma=0$.

Figure 4

