
Homework 3

Due: Friday, 14 February 2014 at 1pm

This is an individual assignment!

PROBLEM 1 (10pts):

For both circuits depicted in Fig. 1, calculate the input impedance, output impedance, and voltage gain, v_{out}/v_{in} . Assume $\beta = 100$ and $V_A = \infty$. Repeat assuming $V_A = 100$ V.

PROBLEM 2 (10pts):

For the small-signal circuits shown in Fig. 2, assume all transistors are identical and have the following parameters: $I_D = 2$ mA, $W = 10 \mu m$, $L_{drwn} = 130$ nm, $L_d = 15$ nm, $X_d = 0$, $k_p' = 200 \mu A/V^2$, $\gamma = 0$, $\lambda = 0$, $C_{ox} = 15$ fF/ μm^2 , $C_{sb} = C_{db} = 0$.

Given $Rs = 500 \Omega$, $RL = 1 k\Omega$, and CL = 100 fF:

(a) Calculate the DC small-signal voltage gain *vo/vi* for circuit in Fig. 2A.

(b) Calculate the low -3dB cutoff frequency and mid-band voltage gain *vo/vi* for circuit in Fig. 2B.

(c) Calculate and compare the high 3-dB cutoff frequencies of the two circuits.

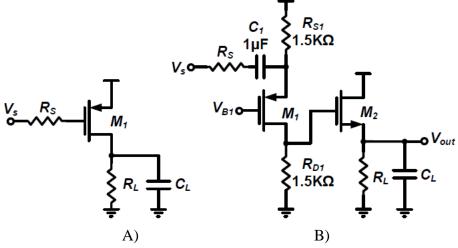


Figure 2

PROBLEM 3 (10pts):

The ac schematic of a wideband MOS current amplifier is shown in Fig. 3. The W/L of M_2 is four times that of M_1 and corresponding bias currents are $I_{D1} = 1$ mA and $I_{D2}=4$ mA. Calculate the low-frequency, small-signal current gain io/ii and use the open-circuit time constant method to estimate the -3dB cutoff frequency. M1: $C_{gd} = 5$ fF, $C_{gs} = 20$ fF, $C_{sb} = C_{db} = 9$ fF, $V_{ov}=0.3$ V, and $r_o = \infty$. M2: $C_{gd} = 20$ fF, $C_{gs} = 80$ fF, $C_{sb} = C_{db} = 36$ fF, Vov = 0.3V, and $r_o = \infty$.

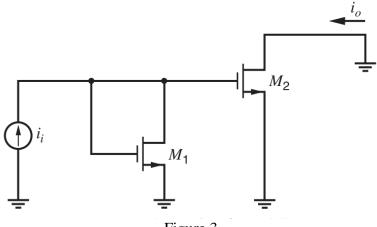


Figure 3

EXTRA PROBLEM FOR EE 240A STUDENTS: PROBLEM 4 (20pts):

A multistage BiCMOS amplifier circuit is shown in Fig. 1:

(a) Calculate the DC current flowing through each branch and DC voltage at each node.

(b) Calculate transistor small-signal parameters (i.e. g_m , r_π , r_o , C_π , C_μ , C_{gs} , C_{gd})

(c) Provide expressions and calculate numeric values for the input resistance, R_{in} ; output resistance, R_{out} ; first stage gain, v_{o1}/v_s ; second stage gain, v_{o2}/v_{o1} ; third stage gain, v_{out}/v_{o2} and total gain, v_{out}/v_s .

(d) Estimate the low frequency cut-off f_L and high frequency cut-off f_H of the amplifier using open and short-circuit time-constant methods.

BJT parameters: β =100, *VA*=100V, *VBE(on)*=0.7V, *VCE(SAT)*=0.2V, *τF*=150ps, *Cje*=50fF, *Cµ*=1pF, *VT*=25mV.

MOS parameters: $V_{th0}=0.5V$, $k'=160\mu A/V^2$, $W/L=10\mu m/1\mu m$, $\lambda=0.05V^{-1}$, $C_{ox}=30\mu F/cm^2$, $C_{ol}=1pF$, $\gamma=0$.

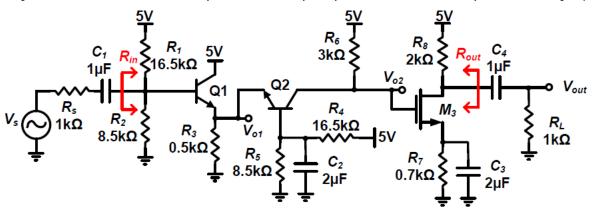


Figure 4