Many bipolar junction transistors (BJTs) and field-effect transistors (FETs) are used as nonlinear devices where the collector current \(I_C \) is a strong function of the base-emitter voltage \(V_{BA} \). Weakly nonlinear devices are characterized as "small" in terms of the bias current \(I_B \).

Common examples include BJT, JFET, vacuum tube, MOSFET, etc.

- **BJT**: John Bardeen, Wiliam Shockley, and Walter Brattain worked on these devices in the 1940s.
- **JFET**: Reber, Shockley, and Bardeen at Bell Labs created the first JFET in 1950.
- **MOSFET**: Basic MOSFETs were invented in 1960.
- **Vacuum Tube**: Edwin H. Armstrong and others developed vacuum tubes in the early 20th century.

Electrical quantities and functions:

- **Input Voltage**: \(V_{in} \)
- **Input Current**: \(I_X \)
- **Output Voltage**: \(V_{out} \)
- **Bias Voltage**: \(V_{BA} \)
- **Collector Current**: \(I_C \)

Diagram:

- **Diode symbol**: Represents a single diode.
- **Transistor symbol**: Shows a transistor with its connections.
- **Current sources**: Indicate the direction and magnitude of current flow.

Equations and Analysis:

- \(V_{X} \) is some kind of turn-on voltage (almost linear, sharp), sometimes negative.
- \(V_{BA} \) is constant.

Output Voltage Calculation:

\[
V_{out} = V_{in} - V_{BA}
\]

Source Follower, Emitter Follower, Cathode Follower:

- **Source Follower**:
 \[
 I_C = I_X = \frac{V_{in}}{R}
 \]
- **Emitter Follower**:
 \[
 V_{out} = V_{in}
 \]
- **Cathode Follower**:
 \[
 V_{out} = V_{in} - V_T
 \]

Graph:

- **Graph 1**: Shows the relationship between \(I_C \) and \(V_{BA} \).
- **Graph 2**: Illustrates the effect of \(V_{secret} \) on \(I_C \).

Further Details:

- **Linearization**: Large signal, operating point, small signal, device physics, frequency response.
Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

Do \(V_{b1} \) and \(V_{b2} \) matter much? Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

I\(_x \) passes through \(V_t \)

\[V_{out} = \max (V_{m1}, V_{m2}) - V_t \]

\[V_{tail} = \max (V_{m1}, V_{m2}) - V_t \]

Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

\[I_x = g_m \delta V_n \]

\[V_{in} = V_{out} \]

Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)

Why not just calculate it directly?

\[V_o = V_{cc} - I_0 R \]

\[I_c = I_s \left(e^{v_c/v_m} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \]

Simple BJT model

\[V_o = V_{cc} - R I_s \left(e^{v_c/v_m} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \]

Painful to solve by hand

Easy for computers

\[g_0 \delta V_{out} = -\delta I = -g_m \delta V_n \]

\[\frac{\delta V_{out}}{\delta V_{in}} = -\frac{g_m}{g_0} = -9 \]

\[\delta I = g_m \delta V_n \]

\[V_{in} = V_{out} \]

Do \(V_{b1} \) and \(V_{b2} \) matter much? not as long as they are \(> V_{tail} + V_t \)
Closed form equations

unsolvable by hand
(easy for computer & DC sweep)

Linearization gives very accurate answer as long as you set the Region of Operation right.

\[I_D = \begin{cases} 0 & \text{if } V_{GS}, V_{DS} \\
\frac{V_{GS} (V_{GS} - V_T)^2 (1+2V_{DS})}{L} & \text{otherwise} \end{cases} \]

\[I_D(V_{GS}, V_{DS}) = I_D \]

At some point, \(V_{GS}, V_{DS} \)

\[I_D(V_{GS} + \Delta V, V_{DS} + \Delta V) = I_D + \left. \frac{\partial I_D}{\partial V_{GS}} \right|_{V_{GS} + \Delta V, V_{DS}} \Delta V_{GS} + \left. \frac{\partial I_D}{\partial V_{DS}} \right|_{V_{GS} + \Delta V, V_{DS}} \Delta V_{DS} \]

\[= I_D + g_m \Delta V + g_D \Delta V_{DS} \]

Linearization (Taylor)

\(f(x, y) \) continuous, \(f(x_0, y_0) = F_0 \)

best approx to \(f \) near \(x_0, y_0 \)

\[f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \left. \frac{\partial f}{\partial x} \right|_{x_0, y_0} \Delta x + \left. \frac{\partial f}{\partial y} \right|_{x_0, y_0} \Delta y \]

\[= F_0 + (x \text{ slope}) \Delta x + (y \text{ slope}) \Delta y \]