Lab 2

HW 3

Midterm 1: 2 weeks from today, in class

Single pole systems

- Gain vs. freq
- Transient step response

Last time: lots of things look like single pole amps

\[
\frac{I_1}{I_2} = \frac{5V_s}{3Io} \quad \text{or} \quad \frac{V_1}{V_2} = \frac{5V_s}{3Io}
\]

- If source resistance is low, we are ignoring

\[
\text{source resistance} \approx \frac{V_i}{I_s}
\]

- So \(\frac{V_o}{V_i} = H(s) = \frac{-9mR_o}{1 + 3\omega_p R_o} \)

- \(\omega_p = \frac{1}{R_o C_o} \)

\[
V_o = i_x R
\]

\[
i_x = \frac{V_o}{R} \quad \text{or} \quad V_o = i_x R C \quad \frac{V_o}{V_i} = \frac{1}{s C}
\]

\[
\frac{V_o}{V_i} = \frac{1}{s C} \quad \text{or} \quad V_o = \frac{i_x}{s C} = i_x \frac{1}{j\omega C}
\]

R = 1M \quad 1M

C = 1\mu F

\[
Z = \frac{1}{j\omega C} \quad Z_p = \frac{1}{j\omega C}
\]

\[
Z_p = \frac{1}{j\omega C} \quad Z_p = \frac{1}{j\omega C}
\]

\[
\frac{V_o}{V_i} = \frac{1}{s C} \quad \text{error:} \quad \frac{V_o}{V_i} = \frac{1}{s C}
\]

Max(1, 10m)

Worst case error: \(\frac{1}{2} \)

error: \(\frac{1}{2} \)

Not super helpful for above \(\omega_p \)
\[A_V = H(s) = \frac{-g_m R_0}{1 + \frac{g_m R_0}{w C_D}} \]

\[|H(iw_c)| = 1 \quad \text{unity gain} \]

\[\left| \frac{g_m R_0}{1 + \frac{g_m R_0}{w C_D}} \right| = \frac{g_m R_0}{w R_0 C_D} = \frac{g_m}{w C_D} \]

\[\frac{g_m}{w C_D} = 1 \implies w = \frac{g_m}{C_D} \]

\[w_c = \frac{g_m}{C_D} \]

\[w_p = \frac{1}{R_0 C_D} \]

\[|A_V| = \frac{g_m R_0}{w C_D} \]

- Increase \(R_0 \) by multiple \(\alpha \)
- More gain, lower pole
- Gain above pole remains unchanged.

- Increase \(C_D \) by \(\alpha \)

- Increase \(g_m \) by \(\alpha \)
- \(w_p \) unchanged.
- More gain, more BW possible!