DETAILED COURSE SYLLABUS (TENTATIVE)

The following comprises a **tentative** syllabus describing the material to be covered in this course. Material to be covered for each dated lecture is indicated along with the corresponding sections of the required and recommended textbooks, where GM = Gray & Meyer's "Analysis and Design of Analog Integrated Circuits" (i.e., the required text), and R = Razavi's "Design of Analog CMOS Integrated Circuits" (i.e., the recommended text). How much of this material we can actually cover is a function of the degree of preparation of the average student in the class, which can vary depending upon which versions of EE 105 were taken.

Date		Material to be Covered	HWs	Labs
Aug.	27	Administrative Information, Introduction/Overview: Op Amps		
Sept.	1	Dev. Operation & Models: BJT & MOS; G&M: §1.1-1.6, R: Chpt. 2		No Lab
	3	Dev. Operation & Models, Inspection Analysis; G&M: §1.1-1.6, R: Chpt. 2		
	8	Bipolar Inspection Analysis; G&M: §3.1-3.3, R: §3.1-3.4, §6.1-6.4	HW#1 Due	No Lab
	10	MOS Inspection Analysis; G&M: §3.4, R: §3.5-3.6		
	15	Freq. Response Inspection Analysis I; G&M: §7.1-7.3, R: §6.5	HW#2 Due	No Lab
	17	Freq. Response Inspection Analysis II; Active Loads; G&M: §4.3		
	22	Active Loads: 1-Tx and Multi-Tx Loads; G&M: §4.3	HW#3 Due	Lab #1: 1-Tx
	24	Current Sources; G&M: §4.2, R: §5.1-5.2, R: §5.1-5.2		MOS Amp.
	29	Supply & Temperature Indep. Biasing; G&M: §4.4.2-4.4.3, R: Chpt. 11	HW#4 Due	Lab #1 (cont.)
Oct.	1	High Swing Current Sources I; G&M: §4.2.5.2, R: §5.1-5.2		
	6	High Swing Current Sources II; G&M: §4.2.5.2, R: §5.1-5.2	HW#5 Due	Lab #2-1 Diff.
	8	Current Source Matching; G&M: §A.4.1		Pair Anal. &
				Des.
	13*	Op Amps: Op Amp Feedback Circuits; ECP, Half Circuits; G&M: §6.1-6.2,	HW#6 Due	Lab #2-2 2 nd Gain Stage Des.
		§3.5, R: §4.1-4.4		
	15*	Op Amps: SCP; Current Mirror Load; G&M: §4.3.5		
	20	Op Amps: Input Offset Voltage; Finite Gain-BW Product, Freq. Response	HW#7 Due	Lab #2-3
		in FB; G&M: §3.5.6, §A.4.2, §9.2		Complete
	22	Op Amps: High Gain Designs; G&M: §6.3-6.7, R: §9.3-9.4		Op-Amp Anal.
	27	Op Amps: Swing, Compensation & Slew Rate (a 1 st pass); G&M:		Lab#2 (cont.)
		\$9.4.1-9.4.2, \$9.6.1-9.6.2, R: \$9.7-9.8		
	29	Midterm Exam		
Nov.	3	Op Amps: Output Stages; G&M: §5.1-5.5		Lab #3 CMOS
	5	Compensation: Stability of FB Circuits, Narrowbanding; G&M : §9.4, R:		Op-Amp Design Project
	10	§10.1-10.3		Design Project
	10	Compensation: Pole-Splitting Pole/Zero Plots; G&M: §9.4-9.5, R: §10.4	HW#8 Due	Work on the
	12	Compensation: For CMOS Op Amps, Choosing C_c ; G&M : §9.4.3-9.4.5, R: §10.5-10.6		Design Project
	17	Compensation: CMOS Op Amp RHP Zero; G&M : §9.4.3, R: §10.5-10.6	HW#9 Due	Work on the
	17	Slew Rate; G&M : §9.6	n w#9 Due	Design Project
	24	Settling Time & PSRR: Handout, R: §9.9	HW#10 Due	Design i Toject
	24	Feedback I: Pros & Cons, Inspection Analysis of FB Ckts., Influence on I/O	nw#10 Due	Work on the Design Project
	20	Impedance; Handout, G&M : §8.1-8.2, §8.4, R: §8.1-8.2		
Dec.	1	Feedback II: Feedback Loading; G&M : §8.5-8.6, R: §8.1-8.3	HW#11 Due	Work on the
	3	Feedback III: Examples; G&M : Chpt. 8, R: §8.1-8.3		Design Project
	8	Reading/Review/Recitation		Work on the
	10	Reading/Review/Recitation	Project Due	Design Project
	10	Final Exam: Wednesday, Dec. 16, 8:00-11:00 a.m. (Exam Group 9)	1 Oject Due	2001511103000

* Dates with an asterisk next to them represent those days that I will not be in town. On these dates I will make appropriate arrangements for the lecture. These will likely entail make-up lectures, possibly in the evenings, but since this course will be webcast, you can always watch the webcast if you cannot attend on the make-up date.