PROBLEM SET \#1

Issued: Thursday, Jan. 28, 2010
Due: Thursday, Feb. 4, 2010, 7:00 p.m. in the EE 143 homework box in 240 Cory

I. MOSFET Characteristics

1. Consider the following circuit. Assume transistor M_{1} is in saturation and that its bias voltages, V_{1} and V_{2}, process parameter $K\left(=\mu_{n} C_{O X}\right)$, and threshold voltage $V_{T H}$ can be changed independently. Indicate in the table how an increase in each of these parameters changes the gate current I_{1}, the drain current I_{2}, the smallsignal transconductance g_{m}, and the small-signal output resistance r_{d} of M_{1}. Use symbols: \uparrow for increase, \downarrow for decrease, -- for no change.

	I_{1}	I_{2}	g_{m}	r_{d}
$V_{1} \uparrow$				
$V_{2} \uparrow$				
$K \uparrow$				
$V_{T H} \uparrow$				

2. Consider the cross-section shown below for an NMOS device under dc biasing where the supply voltage $V_{D D}=2 \mathrm{~V}$, and the gate bias $V_{G}=1.2 \mathrm{~V}$.
Assume $L=0.5 \mu m m_{i} W=50 \mu m, T_{O X}=9 n m, 2 \Phi_{F}=0.8 V_{s} V_{T H Q}=0.7 \mathrm{~V}$, substrate doping $=9 \times 10^{14} \mathrm{~cm}^{-3}$, reiative permittivity of $S i=11.8$, and of $\mathrm{SiO}_{2}=3.9$, channel mobility $=350 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{S}$.

a. Calculate the threshold voltage if $V_{X}=V_{D D}=2 V$.
b. (Continued) Compared to $V_{\text {тно }}$, does the threshold voltage increase or decrease? Is this desirable? Why or why not?
c. Plot drain current versus V_{X} if V_{X} varies from $-\infty$ to 0 .

II. MOSFET Amplifier

3. Consider the MOSFET amplifier given below, where

$$
\mathrm{I}_{\mathrm{DS}}=\frac{\mathrm{K}}{2}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{d}}=2 \mathrm{k} \Omega, \mathrm{~K}=1 \mathrm{~mA} / \mathrm{V}^{2} \text {, and } \mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}
$$

a. Derive an expression for the transistor dc bias point (i.e., dc bias voltage) at the gate terminal as a function of $V_{D D}, R_{1}$ and R_{2}.
b. Determine the required ratio of R_{1} / R_{2} such that the MOSFET transconductance $g_{m}=1 \mathrm{~mA} / V$.
c. What is the dc bias voltage at the output $V_{\text {out }}$?
d. Draw the small-signal model for the amplifier. Write an expression for its gain $v_{\text {out }} / v_{\text {in }}$ and calculate its numerical value. Clearly label the components and input/output.

III. Fabrication Yield/Cost

4. The cost of processing a wafer in a particular process is $\$ 1,000$. Assume that 35% of the fabricated dice are good. For this problem, use Fig. 1.1(c) in the textbook to determine the number of dice.
a. Determine the cost per good die for a 150 mm wafer.
b. Repeat for a 200 mm wafer.
