PROBLEM SET #1

Issued: Thursday, Jan. 28, 2010

Due: Thursday, Feb. 4, 2010, 7:00 p.m. in the EE 143 homework box in 240 Cory

I. MOSFET Characteristics

1. Consider the following circuit. Assume transistor M_I is in saturation and that its bias voltages, V_I and V_2 , process parameter K (= $\mu_n C_{OX}$), and threshold voltage V_{TH} can be changed independently. Indicate in the table how an *increase* in each of these parameters changes the gate current I_I , the drain current I_2 , the smallsignal transconductance g_m , and the small-signal output resistance r_d of M_I . Use symbols: \uparrow for increase, \downarrow for decrease, -- for no change.

	<i>I</i> ₁	I ₂	g _m	r _d
V ₁↑				
V ₂ ↑				
K ↑				
V _{TH} ↑				

Consider the cross-section shown below for an NMOS device under dc biasing where the supply voltage V_{DD} = 2V, and the gate bias V_G = 1.2V. Assume L = 0.5 μm, W = 50 μm, T_{OX} = 9 nm, 2Φ_F = 0.8 V, V_{TH0} = 0.7V, substrate doping = 9 × 10¹⁴ cm⁻³, relative permittivity of Si = 11.8, and of SiO₂ = 3.9, channel mobility = 350 cm²/V/S.

EE 143MICROFABRICATION TECHNOLOGYSPRING 2010
C. Nguyen

- a. Calculate the threshold voltage if $V_X = V_{DD} = 2V$.
- b. (Continued) Compared to V_{TH0} , does the threshold voltage increase or decrease? Is this desirable? Why or why not?
- c. Plot drain current versus V_X if V_X varies from $-\infty$ to 0.

II. MOSFET Amplifier

3. Consider the MOSFET amplifier given below, where $I_{DS} = \frac{\kappa}{2} (V_{GS} - V_T)^2, V_{ED} = 5V, R_d = 2k\Omega, K = 1 \text{ mA/V}^2, \text{ and } V_{TH} = 1V.$

- a. Derive an expression for the transistor dc bias point (i.e., dc bias voltage) at the gate terminal as a function of V_{DD} , R_1 and R_2 .
- b. Determine the required ratio of R_1/R_2 such that the MOSFET transconductance $g_m = 1mA/V$.
- c. What is the dc bias voltage at the output V_{out} ?
- d. Draw the small-signal model for the amplifier. Write an expression for its gain v_{out}/v_{in} and calculate its numerical value. Clearly label the components and input/output.

III. Fabrication Yield/Cost

- 4. The cost of processing a wafer in a particular process is \$1,000. Assume that 35% of the fabricated dice are good. For this problem, use Fig. 1.1(c) in the textbook to determine the number of dice.
 - a. Determine the cost per good die for a 150 mm wafer.
 - b. Repeat for a 200 mm wafer.