1. **Equivalence** Find the Norton equivalent of the following circuit across the terminals \(a \) and \(b \) (in terms of \(V_s \) and \(\beta \)). Note that the current source is dependent on the current \(I_x \).

\[
\begin{align*}
V_s & \quad \quad 10k\Omega \quad I_x \\
\beta \cdot I_x & \quad 100k\Omega
\end{align*}
\]

2. **Superposition Practice**

For the following circuits, use the superposition theorem to solve for the node potential \(V_1 \).

(a)

(b)

(c)
3. Superposition

(a) For the circuit above, first calculate V_{out} with only V_s on?
(b) Now calculate V_{out} with only V_1 on. Repeat this with only V_2 on.
(c) Let’s now turn on V_s, V_1 and V_2. What is the output V_{out}? What does this circuit do to arbitrary input voltages?