Electrical Engineering and Computer Sciences

EECS 16A

First Lecture Plan

- Introductions
- Administrative Details (grading, etc.)
- Overview of 16A's subject matter mosaic
- Introduction to the technology ecosystem

• Intro to imaging

Introduce Faculty

• Babak Ayazifar

<u>ayazifar@eecs.berkeley.edu</u> 517 Cory

- No surprise visits, please!
 - For one-on-one matters,
 - make appointment by e-mail;
 - provide your availability; and
 - we'll pick a mutually-convenient slot to meet.

Introduce Faculty

- Vladimir Stojanović <u>vlada@eecs.berkeley.edu</u> 513 Cory
- Story...
- Other contributors to 16 (besides Babak/Vladimir):
 - Elad Alon, Anant Sahai, Ali Niknejad, Claire Tomlin, Gireeja Ranade, Michel Maharbiz, Laura Waller, Miki Lustig, Vivek Subramanian, Thomas Courtade

Introduce TAs

- 28 TAs
- Many are returning 16A staff members

Head TA

• Email: <u>head-ta-ee16a@berkeley.edu</u>

Email Harrison with:

- Questions not for piazza
- Conflicts
- Emergencies

And we have even more!

• An army of Academic Interns...

– Former 16A students just like you ...

Important Web Sites

• EECS 16A

http://inst.eecs.berkeley.edu/~ee16a/fa16/

• Piazza

http://piazza.com/

Course Policies

- Illnesses
- Religious Holidays (please let us know in advance)
- Disabled Students Program (DSP) Accommodations
- No Distraction Policy
- Grading
- Class Participation
- Labs and Discussion
- HW Cycle
- Piazza
- Extra Credit
- HW Parties & Tips for Success

Grading

- No curve: In theory, each of you can get an A
- Breakdown
 - 33% Cumulative Final
 - 34% Midterms
 - September 19th, 2016 at 8-10pm (Known Problem: CS 70 exam at this time)
 - November 3rd, 2016 at 8-10pm
 - 15% Labs (Attendance Mandatory; drop lowest ONE)
 - 15% HWs (drop lowest TWO)
 - 3% Effort, Participation, Altruism

Interlocking Weekly Homework Cycles (Chronologically Ordered)

- HW **N** released this Tuesday afternoon
- HW **N-1** self-grades due this Friday, at noon
- HW **N** HW Party this Friday
- HW *N* due Tuesday of next week, at noon (No late submissions!)
- HW **N** solutions released Tuesday next week, noon+
- HW **N+1** released Tuesday next week, afternoon
- HW **N** self-grades due on Friday next week, at noon
- Midterm weeks, redoing midterm is a part of HW.
- HW has mechanics, proofs, word problems, and coding.

Tips for Success in 16A:

- Focus on understanding, get enough sleep, and keep up!
- Suggested cycle (reading, lecture, discussion):
 - Skim the readings in the posted notes <u>before</u> lecture
 - Attend lecture; participate, discuss w/ classmates
 - Read notes actively, mark what is challenging
 - Attend discussion, participate, discuss w/ classmates
 - Reread notes carefully, aim for full mastery
 - Strongly-recommended textbook, Introduction to Linear Algebra, 5th Edition, by Gilbert Strang

Tips for Success in 16A: Marathon not Sprint (Continued)

- Suggested cycle (HW)
 - Parse the HW
 - Try HW on your own
 - Collaborate in a study group and attend HW Party
 - Ask/Lurk and help others on Piazza
 - Write up HW on your own (a must!)
 - Study solutions carefully and reflect on what you understand; keep track of various methods of tackling problems
- Do extra problems, and attend bonus sections that we offer.
- Study with others as well as alone.
- Seek and offer help.
- Keep a log of what you study (Babak will say more as we proceed)

Content Introduction

 All of these extract information from the real world and interact with it; we will be learning how to design and understand these devices & systems!

16A: Information Devices and Systems

- Imaging/Tomography (~4 wks)
 - Topics: Basics of linear algebraic thinking and graphs
 - Lab: Single-pixel imager
- Touchscreens (5 wks)
 - Topics: Basics of linear circuits and design
 - Lab: Home-made R and C touchscreens

Locationing and Google PageRank (5 wks)

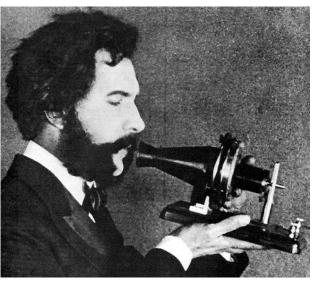
- Topics: Linear-algebraic optimization, eigenvalues/eigenvectors
- Lab: Acoustic "GPS"

Some detailed topics for 16A

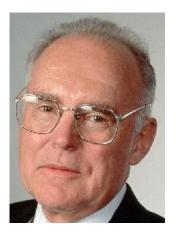
- Vectors and vector spaces
- Inner products, projection, orthogonality
- Matrices and linear transformations
- Rank and solving systems of linear equations
- Graphs, flows, and matrices
- How to do design and synthesis
- KCL, KVL, Ohm's Law

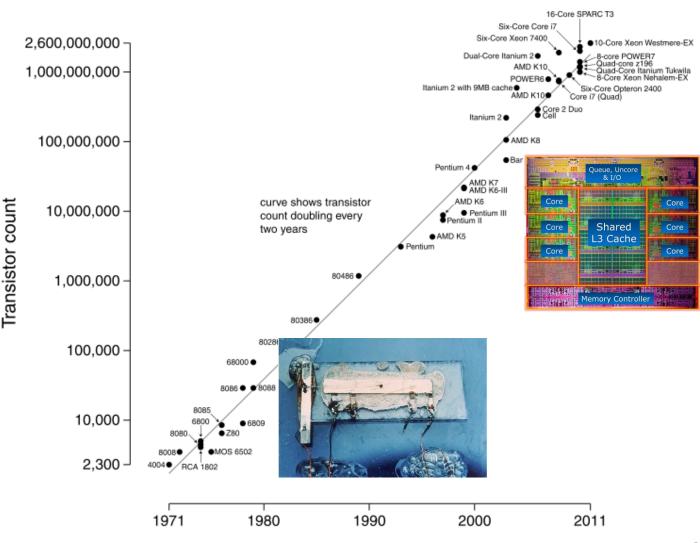
- Equivalence, modeling, and abstraction
- Capacitance and charge
- Gain and feedback
- Correlation and interference
- Linear regression and optimization
- Determinants, eigenvalues and eigenvectors
- Diagonalization

EECS Upper Divs: What 16AB feed

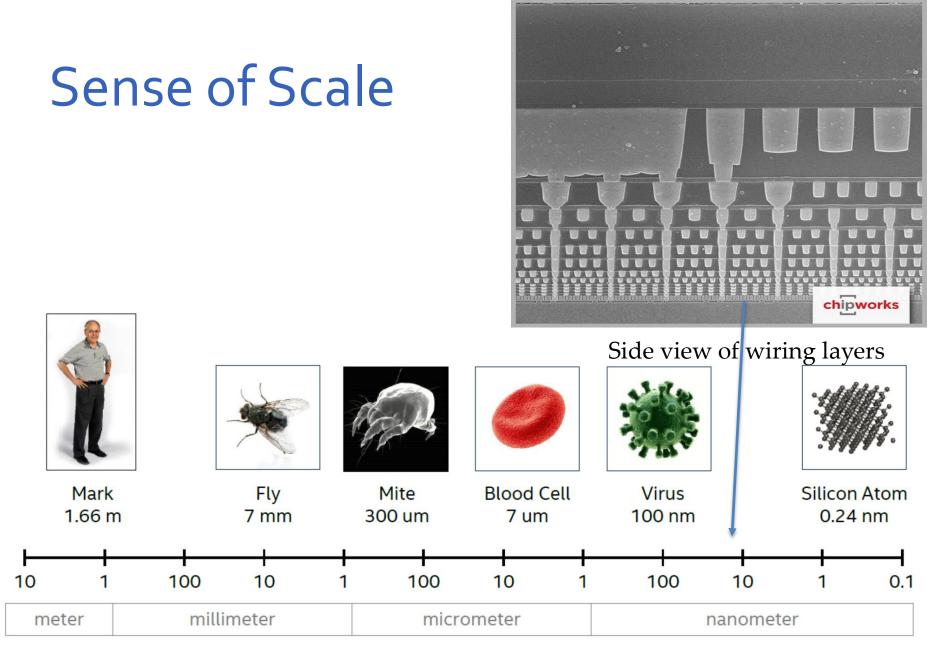

16AB	Modeling and Algorithms	170, 126, 188,	189, 120, <i>121,</i> 123, 174, 144,	Specific Domains	
20 70				121, 122, 168 Comm+Net	176, 145B CompBio, Imaging
61B	General 1 Software	127 162, 161, 169	172 160 <i>,</i> 168 <i>,</i> 149	191 Quantum	128, 106 , 192 Control + Robotics
61A				184 Graphics	186 Databases
61C				164 Compilers	152 Computers
	General 105, Hardware 151	140,	130, 143, 145L	145MO Bio	147 MEMS
40				117 Antennas	142 Comm ICs
16AB		151		118 Optics	113, 137AB, 134 Power+SolarEnergy

How Did We Get From This...



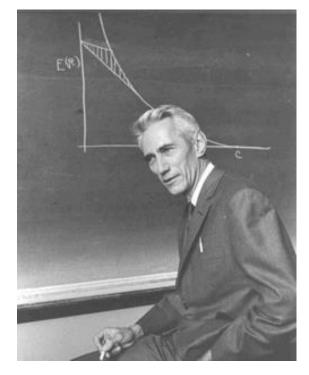

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law



Gordon Moore Intel Cofounder

B.S. Cal 1950!



Date of introduction

Source: Mark Bohr, IDF14

That's Just One Piece of the Puzzle...

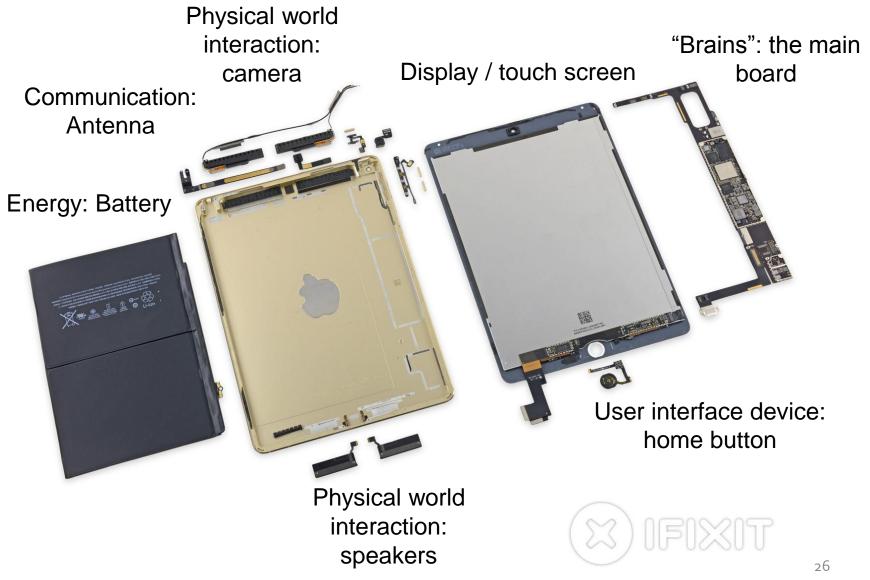
1940's

Where This is Used:

Advanced Metering

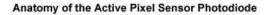
Market Support

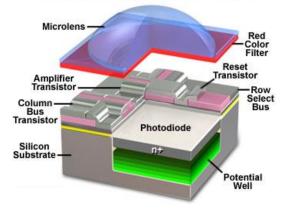
Whom We're Training You to Be

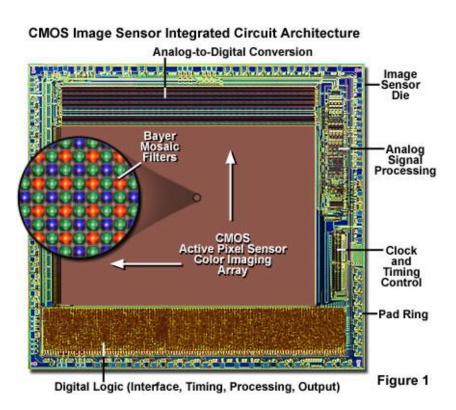

An example system: iPad Air 2

- Runs apps, but:
 - How is it charged / discharged?
 - What makes the display tick?
 - How does the Wi-Fi work?
 - How does it sense touch on the touch screen?
 - How does it sense motion?
 - How do the "brains" operate?

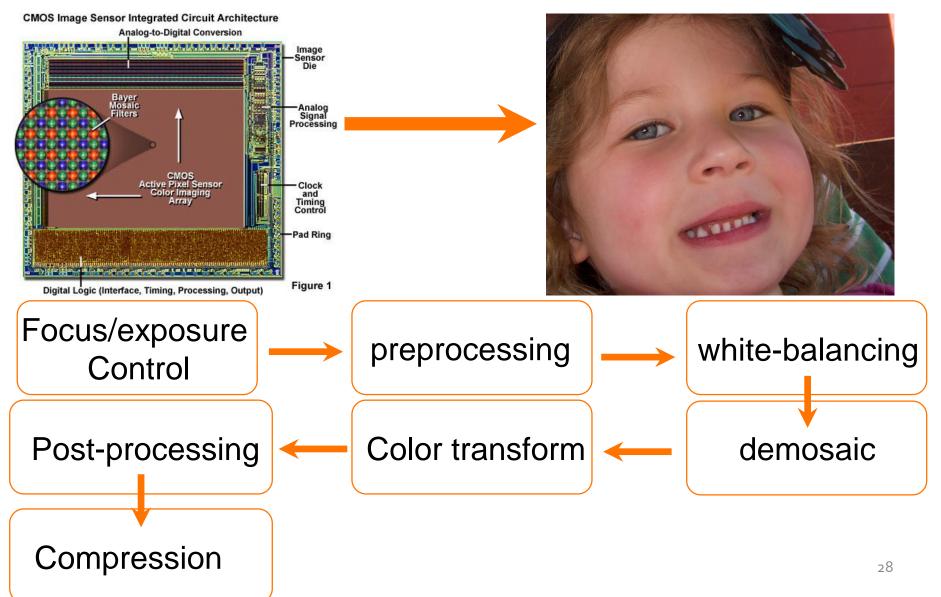
... and how can I learn stuff, so I can work on such cool technology?


Inside an iPad Air 2




The Camera

Goal: Convert light into electrical signals



Get color spatial distribution by using an array of "light" detectors, each under a color filter

Cameras: "Mathematical" Guts

Cameras: Compression

 Compression of 4ox without perceptual loss of quality.

 Example of slight overcompression: difference enables x6o compression!

Imaging

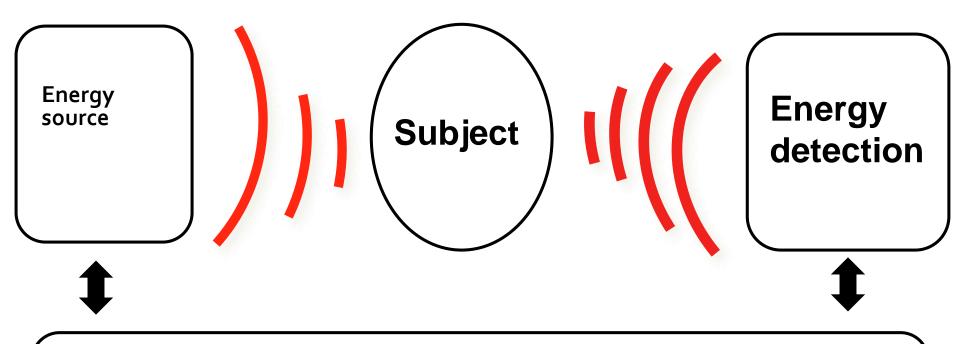
• Everyone knows about cameras...

• What else might you be interested in "imaging"?

Medical Imaging ca. 1895

Need to find a way to see inside without "light"

Medical Imaging Today



All of these were enabled/dramatically advanced by the mathematical and hardware design techniques you will learn in this class!

Imaging In General

Imaging System

(electronics, control, computing, algorithms, visualization, ...)

Simplest Imaging System

 What is the absolute smallest number of components you need to make an imaging system?

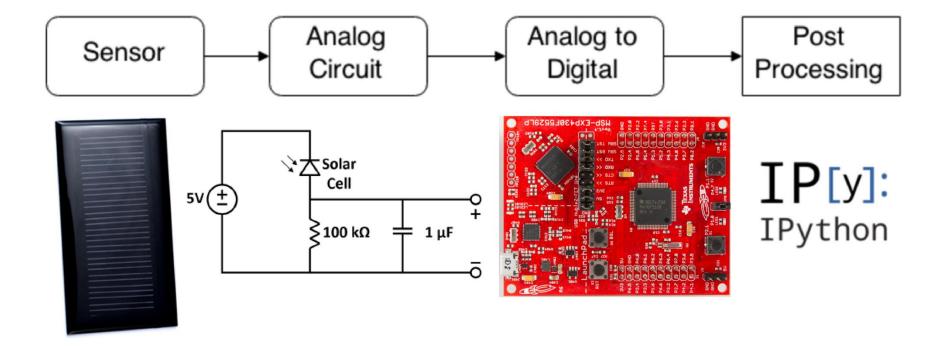
Simple Imager Example

Simple Imager Example

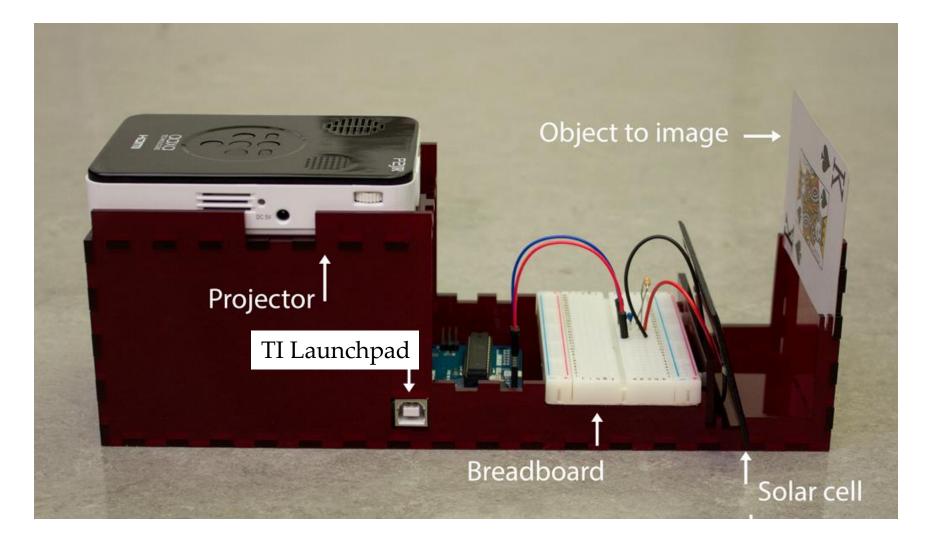
Actual Imager: Your Cellphone Camera

• What is the source of light?

- Does it use any moving components?
- How does it figure out which point is which?


Another Example: Ultrasound Imaging

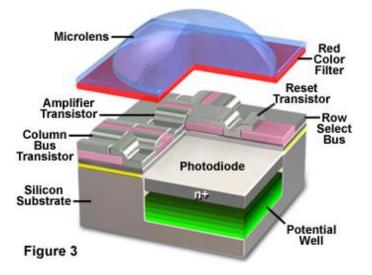
 Sound waves travel into body and an echo signal is recorded. This echo is due to changes in material properties (fat, muscle, fluid, ...)



- The depth dimension is recovered by keeping track of how long it took the echo to come back
- The x-y dimensions are recovered by electronically focusing and steering the sound waves
 - That is, no moving parts needed (except for the transducer itself)

Imaging Lab #1

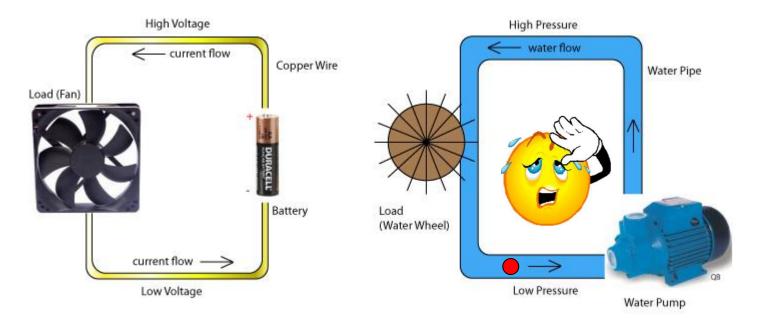
Your Setup



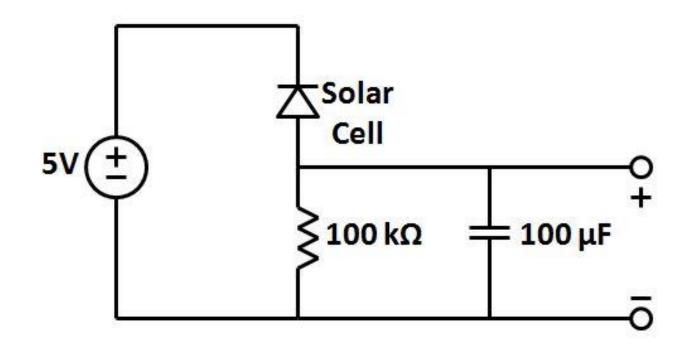
An Imager with Just One Sensor?

- After all, today's cameras have millions of pixels...
- Great teaching vehicle: you can actually get a lot out of surprisingly simple designs
 - Once you know the right techniques!
- In some systems the sources and/or detectors might actually be expensive
 - Take this opportunity to learn a little more about how detectors usually work
 - And how we get them to "talk" to our electronic systems

Photodetector Basics


- Let's focus on light as our example source
 - Same basic principles apply to many other detectors
- Turns out that light comes in discrete packets called photons
 - The brighter a source of light is
 - The more photons it is emitting over a given period of time
- An electronic photodetector captures these photons and converts them to electrons
 - Electrons are the basic unit of electrical charge (Q)

So What Do We Do With Those Electrons?


- Simplest option might be to let those electrons build up somewhere over a period of time
 - And then count how many we accumulated
- All electrical elements (including the photodetectors themselves) can actually build up charge (electrons)
 - The more charge they store, the higher the voltage (V) across them
 - The relationship between the amount of charge and the voltage is known as capacitance (C)
 - Defined by Q = C*V
 - The number of electrons flowing through the device per unit time is defined as the current (I) 43

An Analogy (More Later)

- Key points for now:
 - Current flows from high to low voltage (high pressure to low pressure)
 - These are called "circuits" for a reason the loop has to be closed

Photodetector: The Actual Circuit You'll Use

More Complex Imaging Scenario

- What if we can't shine light (i.e., focus energy) either uniformly on all spots or in just one spot?
- The signal we receive on our detector will be a **linear combination** of several features of the image from different points.
- Can we recover the original image?
 - In many cases, yes!
 - Will start to see how next...