Gram Schmidt Process

Before we begin, let’s remind ourselves that the following subspaces are equivalent for any pairs of linearly independent vectors \(\vec{v}_1, \vec{v}_2 \):

- \(\text{span}(\vec{v}_1, \vec{v}_2) \)
- \(\text{span}(\vec{v}_1, \alpha \vec{v}_2) \)
- \(\text{span}(\vec{v}_1, \vec{v}_1 + \vec{v}_2) \)
- \(\text{span}(\vec{v}_1, \vec{v}_1 - \vec{v}_2) \)
- \(\text{span}(\vec{v}_1, \vec{v}_2 - \alpha \vec{v}_1) \)

Now what should \(\alpha \) be if we would like \(\vec{v}_1 \) and \(\vec{v}_2 - \alpha \vec{v}_1 \) to be orthogonal to each other? Intuitively, \(\alpha \vec{v}_1 \) should be the projection of \(\vec{v}_2 \) onto \(\vec{v}_1 \). Let’s solve this algebraically using the definition of orthogonality:

\[
\vec{v}_1 \text{ and } \vec{v}_2 - \alpha \vec{v}_1 \text{ are orthogonal} \quad (1)
\]
\[
\Leftrightarrow \vec{v}_1^T (\vec{v}_2 - \alpha \vec{v}_1) = 0 \quad (2)
\]
\[
\Leftrightarrow \vec{v}_1^T \vec{v}_2 - \alpha \| \vec{v}_1 \|^2 = 0 \quad (3)
\]
\[
\Leftrightarrow \alpha = \frac{\vec{v}_1^T \vec{v}_2}{\| \vec{v}_1 \|^2} \quad (4)
\]

Definition 17.1 (Orthonormal): A set of vectors \(\{\vec{v}_1, \ldots, \vec{v}_n\} \) is orthonormal if all the vectors are mutually orthogonal to each other and all are of unit length.

Gram Schmidt is an algorithm that takes a set of linearly independent vectors \(\{\vec{v}_1, \ldots, \vec{v}_n\} \) and generates an orthonormal set of vectors \(\{w_1, \ldots, w_n\} \) that span the same vector space as the original set. Concretely, \(\{w_1, \ldots, w_n\} \) needs to satisfy the following:

- \(\text{span}(\{v_1, \ldots, v_n\}) = \text{span}(\{w_1, \ldots, w_n\}) \)
- \(\{w_1, \ldots, w_n\} \) is an orthonormal set of vectors

Now let’s see how we can do this with a set of three vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) that is linearly independent of each other.
• **Step 1:** Find unit vector \vec{w}_1 such that $\text{span}\{\{\vec{w}_1\}\} = \text{span}\{\{\vec{v}_1\}\}$.

Since $\text{span}\{\{\vec{v}_1\}\}$ is a one dimensional vector space, the unit vector that spans the same vector space would just be the normalized vector point in the same direction as \vec{v}_1. We have

$$\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}. \quad (5)$$

• **Step 2:** Given \vec{w}_1 from the previous step, find \vec{w}_2 such that $\text{span}\{\{\vec{w}_1, \vec{w}_2\}\} = \text{span}\{\{\vec{v}_1, \vec{v}_2\}\}$ and orthogonal to \vec{w}_1. We know that $\vec{v}_2 - (\text{projection of } \vec{v}_2 \text{ on } \vec{w}_1)$ would be orthogonal to \vec{w}_1 as seen earlier. Hence, a vector \vec{e}_2 orthogonal to \vec{w}_1 where $\text{span}\{\{\vec{w}_1, \vec{e}_2\}\} = \text{span}\{\{\vec{v}_1, \vec{v}_2\}\}$ is

$$\vec{e}_2 = \vec{v}_2 - (\vec{v}_2^T \vec{w}_1) \vec{w}_1. \quad (6)$$

Normalizing, we have $\vec{w}_2 = \frac{\vec{e}_2}{\|\vec{e}_2\|}$.

• **Step 3:** Now given \vec{w}_1 and \vec{w}_2 in the previous steps, we would like to find \vec{w}_3 such that $\text{span}\{\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}\} = \text{span}\{\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\}$. We know that the projection of \vec{v}_3 onto the subspace spanned by \vec{w}_1, \vec{w}_2 is

$$(\vec{v}_3^T \vec{w}_2) \vec{w}_2 + (\vec{v}_3^T \vec{w}_1) \vec{w}_1. \quad (7)$$

We know that

$$\vec{e}_3 = \vec{v}_3 - (\vec{v}_3^T \vec{w}_2) \vec{w}_2 - (\vec{v}_3^T \vec{w}_1) \vec{w}_1 \quad (8)$$

is orthogonal to \vec{w}_1 and \vec{w}_2. Normalizing, we have $\vec{w}_3 = \frac{\vec{e}_3}{\|\vec{e}_3\|}$.

We can generalize the above procedure for any number of linearly independent vectors as follows:

1. **Inputs:**
 - A set of linearly independent vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$.

2. **Outputs:**
 - An orthonormal set of vectors $\{\vec{w}_1, \ldots, \vec{w}_n\}$ where $\text{span}\{\{\vec{v}_1, \ldots, \vec{v}_n\}\} = \text{span}\{\{\vec{w}_1, \ldots, \vec{w}_n\}\}$.

3. **procedure** **GRAM SCHMIDT**($\vec{v}_1, \ldots, \vec{v}_n$)

4. $\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$

5. for $i = 2 \ldots n$ do

6. $\vec{e}_i \leftarrow \vec{v}_i - \sum_{j=1}^{i-1} (\vec{v}_i^T \vec{e}_j) \vec{w}_j$

7. $\vec{w}_i \leftarrow \frac{\vec{e}_i}{\|\vec{e}_i\|}$

8. end for

9. **end procedure**