1. Row Operations and Determinants

In this question we explore the effect of row operations on the determinant of a matrix. Note that scaling a row by a will increase the determinant by a factor of a, and adding a multiple of one row to another will not change the determinant. Swapping two rows of a matrix and computing the determinant is equivalent to multiplying the determinant of the original matrix by -1. The determinant of an identity matrix is 1. Feel free to prove these properties to convince yourself that they hold for general square matrices.

(a) An upper triangular matrix is a matrix with zeros below its diagonal. For example a 3×3 upper triangular matrix is:

$$
\begin{bmatrix}
a_1 & a_2 & a_3 \\
0 & b_2 & b_3 \\
0 & 0 & c_3
\end{bmatrix}
$$

By considering row operations and what they do to the determinant, argue that the determinant of a general $n \times n$ upper triangular matrix is the product of its diagonal entries if they are non-zero. For example, the determinant of the 3×3 matrix above is $a_1 \cdot b_2 \cdot c_3$ if $a_1, b_2, c_3 \neq 0$.

(b) If the diagonal of an upper-triangular matrix has a zero entry, argue that its determinant is still the product of its diagonal entries.
2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and the associated eigenvectors.

(a) $M = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

(b) $M = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

(c) $M = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$

(d) $M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$