Definition: If $A\vec{x} = \lambda \vec{x}$, then $\lambda \in \mathbb{R}$ is called an eigenvalue of A. \vec{x} belongs to the eigenspace of A corresponding to eigenvalue λ. All vectors \vec{x} in the eigenspace are called eigenvectors corresponding to the eigenvalue λ.

1. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and the associated eigenvectors. If the inverse of M exists, find it.

(a) $M = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$

(b) $M = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

(c) (PRACTICE) $M = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

(d) (PRACTICE) $M = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$

2. Steady State Reservoir Levels

We have 3 reservoirs: A, B and C. The pumps system between the reservoirs is depicted in Figure 1.

![Reservoir pumps system](image)

(a) Write out the transition matrix T representing the pumps system.

(b) You are told that $\lambda_1 = 1$, $\lambda_2 = \frac{-\sqrt{2} - 1}{10}$, $\lambda_3 = \frac{\sqrt{2} - 1}{10}$ are the eigenvalues of T. Find a steady state vector \vec{x}, i.e. a vector such that $T\vec{x} = \vec{x}$.

UCB EECS 16A, Fall 2019, Discussion 5A, All Rights Reserved. This may not be publicly shared without explicit permission.
3. Proofs

(a) Let A be an invertible matrix. Show that if λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.