How does this relate to touch screens?

- When we press at some point on the screen, we “tap” into the middle of a long resistor.
- We can model this as a tap on a series connection of lots of resistors.
- We need to determine the voltage on the tap point and use this for position determination.
1st design tool: Kirchhoff’s Current Law (KCL)

Sum of currents entering a node is zero
Also holds for closed boundary

\[\sum_{n=1}^{N} i_n = 0 \quad \text{(KCL)}, \]

\[i_1 - i_2 - i_3 + i_4 = 0 \]
\[i_1 + i_4 = i_2 + i_3 \]

2nd Design tool: Kirchhoff’s Voltage Law (KVL)

Sum of voltages around a closed path is zero
Sum of voltage drops = sum of voltage rises

\[\sum_{n=1}^{N} v_n = 0 \quad \text{(KVL)}, \]

\[-4 + V_1 - V_2 - 6 + V_3 - V_4 = 0 \]

Sign Convention

- Add up the voltages in a systematic clockwise movement around the loop.
- Assign a positive sign to the voltage across an element if the (+) side of that voltage is encountered first, and assign a negative sign if the (−) side is encountered first.
Combining Resistors – Series

For equivalence, currents and voltages must be the same

- Do a KVL:
 Top Circuit

Bottom Circuit

Equating:

Combining Resistors - Parallel

- Do a KCL

- In other words:

- More generally:
Useful Videos

- KVL and KCL: http://youtu.be/MlwYUBe16C0

Going back to that touch screen...

If the stripes are very conductive, does the voltage vary laterally?
Exercise: Find I

![Diagram with 24V source, resistors, and current $I_0 = 0$]

Exercise: Find I_0

![Diagram with series resistors and current $I_1 = 1\, \text{A}$]
Going back to that touch screen…

- The “tapped” electrode line is called a voltage divider

![Circuit Diagram]

For now, let’s ignore the resistor on the tap and simplify / generalize to:

- Let’s try a KVL:

So we’ve found the voltage. Now to relate this to position….

What about that assumption?

- We just assumed

![Circuit Diagram]

- What does this say about the voltage sensing circuitry?
Position determination

- A touch screen system drives the top and detects on the bottom, and vice versa to find X and Y positions

- Problems:
 - Requires “hard” contact
 - Cannot do multi-touch, since only one voltage is measured on the sensing plate

Exercise: Calculate voltages sensed

- Assume
 - Resistance is 1kΩ/cm of electrode line
 - Screen is 40cm × 30cm
 - $V_{\text{applied}} = 5V$

- What is V_x, V_y for touch at:
 - Center of screen
 - Center of top-left quadrant
Exercise: Simultaneous X, Y determination

- Suppose I were to try to apply voltages on both layers to try to determine X and Y in one measurement, would this work?

Exercise: Find I_1, I_2, I_3, I_4
Independent Sources

• We can achieve multi-touch if we drive with a current rather than a voltage.
• In general, we can define independent sources as:

<table>
<thead>
<tr>
<th>Ideal Voltage Source</th>
<th>Realistic Voltage Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s or V_s'</td>
<td>V_s</td>
</tr>
<tr>
<td>Battery</td>
<td>Any source</td>
</tr>
</tbody>
</table>

The resistance represents the fact that realistic sources “droop” when the load is increased (for example, car headlights often dim as you crank the engine to start.

Exercise: Realistic voltage source

• When I turn on my car headlights, my effective voltage of the 12V battery drops to 11.5V. What is the internal resistance of the battery?
 – Assume the bulb wattage is 50W per bulb
Exercise: Convert from \(V_s \) to \(I_s \)

![Source Transformation Diagram]

Useful Videos

- Transformations: http://youtu.be/6Ujq1SeLhU8
- Mesh: http://youtu.be/yzJl-KufYNg
- Equivalence: http://youtu.be/hNsZJKowd34