Buffering

- You saw that the parallel resistor lowers the voltage
- A voltage measurement device with a non-infinite resistance does the same; we would therefore like a way to connect a voltmeter to the touchscreen without loading the system and lowering the voltage
- This is easily done using a buffer. A buffer has a high input resistance, but can source the current needed by the load.

- In effect, a buffer (nearly) reproduces the input voltage, but doesn't load the input
- Note that a buffer cannot produce energy, so it draws the energy the load requests from some other power supply

Amplifier Integrated Circuits

 In an ideal world, an amplifier IC takes an input signal (for example, V_{in}), and multiplies it by a fixed amount to produce an output signal.

Example:

 $\dot{V}_{out} = A_V \cdot V_{in}$ where A_V is the multiplier, called a voltage gain

• Of course, the energy for this multiplication has to come from somewhere. Therefore, an amplifier IC has power supply connections as well.

Operational Amplifier "Op Amp"

- Two input terminals, positive (non- inverting) and negative (inverting)
- One output
- Power supply + V_{cc} and - V_{cc}

Op Amp with power supply not shown (which is how we usually display op amp circuits)

Equivalent Circuit and Specifications

Parameter	Typical Range	Ideal Op Amp
Open-loop gain A Input resistance R_i Output resistance R_o Supply voltage V_{cc}	$\begin{array}{c} 10^{4} \ {\rm to} \ 10^{8} \ ({\rm V/V}) \\ 10^{6} \ {\rm to} \ 10^{13} \ \Omega \\ 1 \ {\rm to} \ 100 \ \Omega \\ 5 \ {\rm to} \ 24 \ {\rm V} \end{array}$	∞ $\infty \Omega$ 0Ω As specified by manufacturer

• In other words, a really good buffer, since $R_i \rightarrow \infty$. All the needed power for the output is drawn from the supply

Gain of an Op Amp

- · Key characteristic of op amp: high voltage gain
- Output, A, is the op-amp gain (or open-loop gain) you'll see what "open-loop" means later
- · Linear response

• In typical Op Amps, the gain is *really* high (e.g., ~10⁸)

Op Amp as a comparator

- Since A is really high, we can treat the Op Amp as a comparator
- What is v_o when v_p > v_n?
- What is v_0 when $v_n > V_p$?

Useful Videos

- Intro to Amplifiers: <u>http://youtu.be/lsZSzyCK5mw</u>
- Op Amps: <u>http://youtu.be/Xy0ePsLv5Bs</u>
- Types of Amplifiers: <u>http://youtu.be/U8Fz0LEWVlo</u>
- Ideal Op Amps: <u>http://youtu.be/4jL578YD3Ak</u>

Capacitive Touch Screens

- Resistive touch screens suffer from:
 - Need for hard pressure
 - Complicated multi-touch implementation
- Capacitive touch screens address these problems.
- To begin, let's consider the electrical equivalent of human skin

How should we model this?

Capacitors

• By taking advantage of the fact that fingers provide a capacitive path to ground, touch location can be determined by detecting capacitance changes on X and Y electrode arrays

• Since self-capacitive systems only measure capacitance from the electrode to the earth, they have a problem with ghosting

"Ghosting" effect with self-capacitive touchscreens

Mutual Capacitance Touch Screens

59

- Mutual capacitance touch screens enable multi-touch operation without the hard touch and complexity of resistive systems
- Rows and columns of electrodes are used, but (unlike selfcapacitive systems), one orientation is always driven, and the other is sensed.

• The strong fringing fields between the planar electrodes interact with their local environment, including nearby fingers

• Nearby fingers bleed away some charge, reducing the effective capacitive coupling between electrodes

Detecting capacitance changes

• So how can we detect capacitance changes? To answer this, we need to review current/voltage/charge relationships in capacitors.

$$C \stackrel{i}{=} v \qquad i = C \frac{dv}{dt} \qquad q = Cv \qquad v = \frac{1}{C} \int_{t_0}^t i \, dt + v(t_0)$$

- Remember that we know how to apply a voltage and measure current, or apply a current and measure voltage.
- · How would you implement a capacitance measurement circuit?

Capacitor Response: Given v(t), determine i(t)

- One way to detect capacitance:
 - Use a constant current
 - If you start from a known charge level, the voltage in a given time is proportional to capacitance

Useful Videos

- Capacitors 1: <u>http://youtu.be/sLuNtjgImKY</u>
- Capacitors 2: <u>http://youtu.be/bzoHbcuOsWw</u>