

Equivalent Circuit and Specifications

Parameter	Typical Range	Ideal Op Amp
Open-loop gain A Input resistance R_i Output resistance R_o Supply voltage V_{cc}	$\begin{array}{c} 10^{4} \ {\rm to} \ 10^{8} \ ({\rm V/V}) \\ 10^{6} \ {\rm to} \ 10^{13} \ \Omega \\ 1 \ {\rm to} \ 100 \ \Omega \\ 5 \ {\rm to} \ 24 \ {\rm V} \end{array}$	$ \begin{array}{c} \infty \\ \infty \ \Omega \\ 0 \ \Omega \end{array} \\ As specified by manufacturer $

- In other words, Op Amps are *really* close to ideal.
- Note that the output voltage swing is typically limited to around V_{CC}

But how should we use an Op Amp?

- The gain is huge, and the dynamic range is limited. This would normally limit the input signal to a few $\mu V!$
- Additionally, the gain is usually very poorly controlled, and can vary a lot with temperature, etc., and from part to part.
- Instead, we use "negative feedback" to bring the gain under control.

What is negative feedback

- Conceptually, it is taking a "piece" of the output, and providing it to the V_N or "inverting" input
- Since the output is $A_V \cdot (V_P V_N)$, the larger the output, the more the feedback "piece" works to reduce the ouput.
- Overall, this reduces the "effective" gain of the amplifier.
- In fact, if we assume A_V is $\infty,$ then the ultimate result is that V_P must be equal to V_N

70

Ideal Op Amps with Negative Feedback

Start with the following "golden rules"

- $V_P = V_N$ (due to effect of infinite gain and negative feedback)
- $I_p = I_n = 0$ (due to infinite input resistance of ideal Op Amp)
- Since the output has zero output resistance, you won't actually need a KCL at the output node, since the output voltage is entirely determined by the input voltages and feedback conditions

Non-inverting Amplifier

Interestingly, the gain of the Op Amp, A_V, no longer appears in the equation. This is a benefit of feedback with nearly ideal amplifiers... we can achieve the desired result purely by the choice of external components

72

Inverting Amplifier

 $\frac{v_{\rm n} - v_{\rm s}}{R_{\rm s}} + \frac{v_{\rm n} - v_{\rm o}}{R_{\rm f}} + i_{\rm n} = 0.$ $v_n = v_p = 0$

$$G = \frac{v_{\rm o}}{v_{\rm s}} = -\left(\frac{R_{\rm f}}{R_{\rm s}}\right).$$

74

Voltage Follower or Buffer

\boldsymbol{v}_{o} is immune to input and load resistors

Design Exercise: Touch Screen Sensor

Design Exercise: Touch Screen Sensor

• We want a non-inverting amplifier with a gain of 2

Design Exercise: Current Source

• In the multi-touch version, we needed a current source

• In this next exercise, we'll use an Op Amp to convert a battery (which is a voltage source) into a current source

Design Exercise: Current Source

78

- · Remember the golden rules for an ideal Op Amp
 - $-V_{-}=V_{+}$
 - I_{in} = 0
- · We have to use negative feedback to use the golden rules

Since $I_n = 0$, then $I_1 = I_2$. In other words, we have made a constant current source with an output current of $-V_S / R_S$ 79

Optional Exercises: Summing Amplifier

80

Optional Exercises: Difference Amplifier

