
EECS 16A Designing Information Devices and Systems I
Spring 2015 Note 17
Lecture notes by Rachel Zoll (03/19/2015)

1 Communications
In order to obtain more data from a given system, it is necessary to add more beacons. This allows location
estimates to have smaller errors using the least-squares method, and permits smaller error bounds for a given
set of data.

Note that for a given system, if there are more equations n than unknowns m, the equivalent setup in the real
would be adding more beacons.

For example, consider a case where n > m:

a11x1 +a12x2 + . . .+a1mxm = b1
a21x1 + . . .+a2mxm = b2

...
an1x1 + . . .+anmxm = bn

In the past, we could say that our equations were EXACTLY equal to b1. In this scenario, though, there is
some error - we must include some small error to account for small amounts of noise in our measurement.
Here, we represent error as a constant term, e1, being added to our linear expression of the measurement.
Our equation would then be represented as a11x1 + a12x2 + . . .+ a1mxm = b1 + e1, where e1 represents the
error in our main measurement.

We can now write this set of equations as a matrix:


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

...
an1 anm




x1
x2
. . .
xm

=

 ~b

+
 ~e



Here, we are considering e as unknown. If we had enough equations, we could more accurately estimate e;
however, in this case, we can only estimate because we don’t know x or e. Adding more equations would
reduce our error bounds because our errors would begin to average out. A diversity of measurements allows
the aggregated error to be reduced.

To better understand this scenario, let’s take the simplest case, in which there is one variable, x, and two
equations, a11x = b1+e1 and a21x = b2+e2. A naive approach to solve this system would be to take x = b1

a11

and x = b2
a21

. This approach is faulty though, because it cannot predict which measurements will have noise.
In the physical world, all measurements have some amount of noise.

EECS 16A, Spring 2015, Note 17 1

Another approach is to use linear algebra:

[
a11
a21

]
x =

[
b1
b2

]
+

[
e1
e2

]
= A~x−~b

where x is a scale factor. Here, we are trying to minimize e by finding an x of best fit.

From a more mathematical standpoint, we are attempting to find a subspace such that
[

a11
a21

]
lies within

the subspace. Additionally, we want to minimize the distance between our point and our vector
[

a11
a21

]
.

To do so, we find the minimum error that could be associated with our function:

min
x
||~e||2 = min

x
||~Ax−~b||2 = min

x
[(a11x−b1)

2 +(a21x−b2)
2]

Notation-wise, minx specifies that we should choose an x such that minx f (x) is a minimum. Implicitly, we
can choose any real number x to put into our function.

This notation makes sense because we want the mean-squared value to be as small as possible. This would
represent the case where our data has as little noise as possible. The process for minimizing our function of
x is as follows:

1) Take the first derivative of the function

∂

∂x
[(a11x−b1)

2 +(a21x−b2)
2] = 2(a11x−b1)a11 +2(a21x−b2)a21

2) Set the first derivative of the function equal to zero to find its critical points. This step is similar to
cross-correlation and the dot product.

x =
b1a11 +b2a21

(a11)2 +(a21)2 =
~a ·~b
||~a||2

Now that we understand the basic steps necessary to find x, how can we generalize to n-dimensions?

In this case, where would we want to move such that our error vector is orthogonal to~b and

 a11
a21
a31

 , as in

EECS 16A, Spring 2015, Note 17 2

the image above? Our vector equations can be represented as follows: a11
a21
a31

x+

 a12
a22
a32

y =

 b1
b2
b3

+~e OR

 a11 a12
a21 a22
a31 a32


For even larger setups, our equations can be generalized to:

 a11 a12 . . . a1m
...

...
...

...
an1 anm




x1
x2
...

xm

=


b1
b2
...

bn

+~e

Here, we want our error vector to be orthogonal to all of the columns. Another way to think of this matrix-
vector multiplication is as a scaling by the elements of x.

How can we make our error be orthogonal to x? By definition of orthogonality, if AT~e = 0, then ~e is
orthogonal to every single row of our matrix:

[
a!11 a21 . . . an1

] e1
e2
...en

= 0

(Note that AT has dimensions MxN, while A has dimensions NxM). Additionally, we know that AT (A~x−
~b) = 0 and AT A~x = AT~b.

Now that we’ve defined a procedure for determining x, how can we handle cases where A is non-invertible,
meaning that our data is inconsistent, or we don’t have enough data. The easiest case of an invertible A is
where A is equivalent to the zero matrix. Another case to consider is where all of our beacons lies on the
same line. To make A invertible, all we need to do is use more equations in our analysis. If we have enough
equations, we’ll be able to invert A eventually.

To find~x: ~x = (AT A)−1AT ·~b. Similarly, AT A = ||~a2 and (AT A)−1 = 1
(a11)2+(a21)2 .

As a general overview, use least squares as a way of analyzing noisy data. To gain a more accurate repre-
sentation of the data, factor in more measurements.

2 Application of Least Squares: Planetary Movement
Ceres ∈ [Mars,Jupiter]. Gauss used the method of least squares to determine where Ceres would emerge
after its transit behind the sun, given a set of data points.

Goal: Find an equation for the ellipse-like orbit of Ceres to predict where the planet ends up after emerging.

We have an equation, αx2 +βxy+ γy2 +δx+ εy = 0. We also have data. Our goal here is to determine the
coefficients α,β ,γ,δ , and ε , and to fit data to our points. This fitting is known as polynomial interpolation.
As a first step, we must acknowledge the fact that there are an infinite number of points that would satisfy

EECS 16A, Spring 2015, Note 17 3

our equation. The first step is to normalize our equation so that we can decouple our time data from our
actual position:

αx2 +βxy+ γy2 +δx+ εy = 1

Next, write as a matrix-vector equation:
x2

1 x1y1 y2
1 x1 y1

x2
2
...

...
...

...
...

x2
n yn




α

β

γ

δ

ε

=


1
1
...
1


If the data is too close together (in this case, if the data for the location of the planets were taken at too close
of time intervals), this method won’t produce a very accurate fit. Least squares is useful for polynomials,
but it may be necessary to look at the data to determine which type of fit is best. We can tell that our data
and fit are accurate by looking at our data to determine which one has the least error.

General Polynomial Fits: p(x) = adxd +ad−1xd−1 + . . .+a1x+a) = 0

Polynomial fits are possible if we have have many points (x,y) that we know pass through this line. For a
degree d polynomial, we would want d+1 polynomials to have as many data points as possible. An example
of a generalized polynomial fit:

 xd
1 xd−1

1 . . . x 1
...

...
...

...
...

xd
n xd−1

n . . . xn 1




ad
ad−1

...
a0

=


y1
y2
...

yn



EECS 16A, Spring 2015, Note 17 4

