Lecture notes by Christine Wang (03/31/2015)

Solving underdetermined sets of equations

So far, we've learned how to solve overdetermined systems of equations (where there are more equations than variables) using least-squares. In this lecture, we solve under-determined system of equations using a slightly different approach.

Suppose $A \vec{x}=b$, where A is an $n \times m$ matrix, b is an unknown n-vector, and x is an unknown m-vector. Assume $n<m$ - there are fewer constraints than unknowns.

$$
\left[\begin{array}{ll}
A &]
\end{array}\right]=[b]
$$

We also assume that A has full row rank, $\operatorname{rank}(A)=n$. (Rank is the number of independent columns.)
Example 1: How do you represent the line $x_{1}+x_{2}=1$ as $A \vec{x}=b$?
We can formulate this as an underdetermined set of equations.

$$
\begin{aligned}
A \vec{x} & =b \\
{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x 1 \\
x 2
\end{array}\right] } & =[1]
\end{aligned}
$$

In general, in this case, $A \vec{x}=b$ has an infinite number of solutions. We can pick one of these solutions by finding the one with the minimum norm.

$$
\min _{\vec{x}}\|\vec{x}\|^{2} \text { such that } A \vec{x}=b
$$

In this case, it turns out to be the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.
Example 2: Suppose $C_{1}, C_{2}, R_{1}, R_{2}$ are the components given to you, and they are organized in the setting below. You would like to have voltage b across resistor R_{2} in the figure. We would like to charge the capacitors to voltages x_{1} and x_{2} to get b. Find the capacitor voltages x_{1} and x_{2} to minimize $\|x\|^{2} . b$ is the voltage between the 2 unconnected terminals to the right of the circuit.

Solution: Notice here that what matters to determine b is just the total volatage $x_{1}+x_{2}$. So we only really have one constraint, but again we have two variables that we can choose. We know from the equation for a voltage divider that if the voltages on C_{1} and C_{2} are x_{1} and x_{2} then

$$
b=\left(x_{1}+x_{2}\right) \frac{R_{2}}{R_{1}+R_{2}}
$$

Now, we can set:

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{l}
\frac{R_{2}}{R_{1}+R_{2}} \\
R_{1}+R_{2}
\end{array}\right] \\
{\left[\frac{R_{2}}{R_{1}+R_{2}}\right.} \\
\frac{R_{2}}{R_{1}+R_{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=b=\left(x_{1}+x_{2}\right) \frac{R_{2}}{R_{1}+R_{2}} .
$$

in the desired format $A \vec{x}=b$.
We solve this constrained optimization problem using the method of Lagrange multipliers, where we add a term to the quantity to be minimized. The vector $\vec{\lambda}$ is the vector of the Lagrange multipliers.

$$
\begin{equation*}
\min _{\vec{x}, \vec{\lambda}}\|\vec{x}\|^{2}+\vec{\lambda}^{T}(b-A \vec{x}) \tag{1}
\end{equation*}
$$

Differentiating with respect to \vec{x} and setting the result to 0 gives

$$
\begin{aligned}
\frac{\partial}{\partial \vec{x}}\left(\vec{x}^{T} \vec{x}+\vec{\lambda}^{T}(b-A \vec{x})\right) & =0 \\
2 \vec{x}^{T}-\vec{\lambda}^{T} A & =0 \\
2 \vec{x}-A^{T} \vec{\lambda} & =0
\end{aligned}
$$

Left-multiplying by A :

$$
\begin{aligned}
2 A \vec{x}-A A^{T} \vec{\lambda} & =0 \\
\therefore \vec{\lambda} & =\left(A A^{T}\right)^{-1} 2 A \vec{x}
\end{aligned}
$$

Differentiating (1) with respect to $\vec{\lambda}$ and setting the result to zero:

$$
\begin{aligned}
A \vec{x} & =b \\
\vec{\lambda} & =\left(A A^{T}\right)^{-1} 2 b
\end{aligned}
$$

Since $2 \vec{x}-A^{T} \vec{\lambda}=0$,

$$
\vec{x}=A^{T}\left(A A^{T}\right)^{-1} b
$$

This is the least-norm solution to $A \vec{x}=b$.

