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Signals

We’re going to be talking about signals and systems that process those signals. At its heart, a signal is just a
function, and we try to convey information by mapping it to a given signal. Signals therefore have a domain
and a range. There are several different types of signals, but the ones we plan on studying are –

1. Continuous time signals (analog signals) - signals that you can draw across the real axis. Usually, the
variable in the x direction is time (we have x(t), but it does not have to be t that is the variable). A
continuous time signal is defined mathematically by the domain and range where x : R 7→ R (or C).
The following is an example of a speech waveform represented as an analog signal over time:

2. Discrete time signals - signals that are only defined on discrete values in the domain (they are unde-
fined at all other points). This signal is not a function of a continuous argument, so it can map over a
continuous space by sampling across it. Because these signals are not defined across all values of x,
they cannot be drawn as a continuous graph. Mathematically, the domain and range that define these
are x : Z 7→ R (or C).
The following image is the speech waveform from before, except sampled and represented as a lol-
lipop plot of the digital version of the signal.

There are 2 views, or broad domains, that are going to be relevant for signal analysis to us: the Time Domain
view (signal’s footprint in the context of time) and the Frequency Domain View (decomposing such signals).
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Transmitting a Signal on a Carrier

In the previous lecture, we were going over an example where there were two pieces of information on a
single function, and we wanted to try to extract each of these signals. We had the following equation –

x(t) = X1cos(ω1t)+X2cos(ω2t) (1)

where X1 and X2 are the two different pieces of information and cos(ω1t) and cos(ω2t) are the two carrier
signals for each of the frequencies ω1 and ω2.
There are actually 2 ways to transmit information

a. Time-division-multiplexing - the idea that people must take turns talking so only 1 person can be
talking at a time (e.g. the dinner table).

b. Frequency-division-multiplexing - the idea that several people can talk at the same time because the
signal contains the information from all of them at once.

In the example that we will be working on, we are working with a case of frequency-division multiplexing.
We are, in this case, working with a special case where X1 and X2 are constants. The more general form of
the problem where, instead of constants, X1 and X2 are actually functions! The equation, which can carry
arbitrarily large numbers of signals (though with diminishing returns), is

x(t) = X1(t)cos(ω1t)+X2(t)cos(ω2t)

Going back to the original problem, we used the following setup to generate a new function q(t) from x(t)
to help us recover the original function.

We are essentially multiplying x(t) by cos(ω1t). That means we get that

q(t) = X1cos2(ω1t)+X2cos(ω1t)cos(ω2t) (2)

We can use some trigonometric identities to transform this equation into something usable. We know that –

cos2(x) =
1
2
+

1
2

cos(2x) (3)

cos(α)cos(β ) =
1
2
(cos(α +β )+ cos(α−β )) (4)

We use equation 3 on the first part of q(t) and equation 4 on the second part of q(t).
From that, we get –

q(t) =
X1

2
+

X1

2
cos(2ω1t)+

X2

2
cos((ω1 +ω2)t)+

X2

2
cos((ω1−ω2)t)
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To avoid some clutter (we don’t have to make this assumption, but it simplifies the explanation), let us
assume that ω1 < ω2. Also, we assume without loss of generality that ω1 = k1ω0 and ω2 = k2ω0 where ω0
is some fundamental frequency and k1,k2 ∈ N.
From this, we know that cos(ω0t) has the period T0 =

2π

ω0
. However, because of the assumptions we made

about how ω1 and ω2 relate to ω0, We know that cos(ω1t) has the period T1 = T0
k1

, and that cos(ω2t) has
the period T2 = T0

k2
. Now, we heard from the last lecture that we wanted to average q(t) over some time

interval so that the terms from the cosine graphs go to 0 because of the periodic nature of the cosine wave.
Therefore, we need a way to average this continuous function. The following equation from basic calculus
lets us do this –

x̄ =
1

b−a

b∫
a

x(t)dt

To understand this, we know that the discrete analog for this average value of x0,x1,x2 . . .xN−1 should be

x̄ = 1
N

N−1
∑

k=0
xk We now want to average this function over some interval that matches the cycles of both

frequencies, and the most obvious interval to average over in this case would be to average over T0. Thus,
we get –

q̄ =
X1

2
+

X1

2
1
T0

T0∫
0

cos(2ω1t)+
X2

2
1
T0

T0∫
0

cos((ω1 +ω2)t)+
X2

2
1
T0

T0∫
0

cos((ω1−ω2)t) (5)

For the first integral term, we average over 2k1 cycles ( T1
2 = T0

2k1
=⇒ 2k1 cycles). For the second term,

k1 + k2 cycles, and, for the third term, k2− k1 cycles, where the number of cycles is found by the same
process as the first integral term.
The same strategy will work in the general case described earlier.

All of this really works because
T∫
0

cos(ω1t)cos(ω2t)dt = 0 if ω1 6= ω2, and this works for any interval over

T (from −T
2 to T

2 or T to 2T ). This is, in general denoted as
∫

<T>
(an integral over a continuous interval of

duration T ). This is actually an inner product, and these signals will end up being orthogonal.

Phasors

A phasor is a complex number representing a sinusoidal function whose amplitude, frequency, and phase
are time-invariant.
We’re going to describe the phasor denoted by q(t) = eit

The spectrum of a signal is its decomposition in terms of different complex exponentials, each of which
represents some different frequency. If you can get signal into a linear composition of such signals, you
have decomposed it into its constituent frequencies. From these you can see how much of a signal is in
some complex signal. An example of this in the real world is the equalizer for music, which adjusts how
much of the constituent parts of a song are output. For example, in the case of q(t),

x(t) = X0eiω0t +X1eiω1t + · · ·+XN−1eiωN−1t (6)
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Now, consider the complex plane and say you have some particle whose position is described by q(t)

(Note that in this image, we see ω . In our math, we will replace this with t in all instances where we see ω

here.)
We want to prove the claim that q(t) is always on the unit circle. We know that q(0) = 1. Because we have
the complex plane, we know that

eit = cos(t)+ isin(t)

We want to assert that complex exponentials will have the same properties as the function r = eαt , which
has the critical property that ṙ(t) = ∂ r

∂ t = αet = αr(t)
We now work with q(t).

q(t) = eit

q(0) = 1

q̇(t) = ieit = iq(t) where i =
√
−1

Now, for any complex number z = a+ ib, iz =−b+ ia, and iz is orthogonal to z.
Then, we can say that for q(t),

q(t) = a(t)+ ib(t)

q̇(t) =−b(t)+ ia(t) = ȧ(t)+ iḃ(t)

=⇒ ȧ(t) =−b(t)

=⇒ ḃ(t) = a(t)

We get the last two implications just by comparing these two different real and complex parts of q̇. Note that
since q̇(t) = ieit , q̇(t) = 0. Therefore, we can see that q̇(t) is always perpendicular to q(t), which, intuitively
means that q(t) should go in a circle (see uniform circular motion from physics), so we know that is one
trajectory that seems like the right answer. We want to prove this is the only trajectory possible for q(t).
Start by multiplying the two equations we got from the implication

a(t)ȧ(t) =−b(t)ḃ(t)

a(t)ȧ(t)+b(t)ḃ(t) = 0

2a(t)ȧ(t)+2b(t)ḃ(t) = 0
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By integrating, and remembering the chain rule, and the initial condition that q(t) = 1, which means that
a(t) = 1 and b(t) = 0.

a2(t)+b2(t) =C

12 +02 = 1 =C

a2(t)+b2(t) = 1

Thus, we have proven that the trajectory is in the path of a unit circle, since this equation matches the
equation of a unit circle.
We can also note that q(t) = eit takes 2π seconds to complete 1 revolution. That implies that q(t) = ei2πt

takes 1 second to complete a full cycle and is a signal of frequency 1 Hz.
More generally, ei2π fot takes f0 cycles per second. This is a single frequency signal, which means it can be
expressed by a single complex exponential.
In the frequency domain, its representation, represented by Q( f ) is

where f0 is the cycles per second measure and the number next to the arrow denotes its “strength”. This is
how you represent the spectrum of a signal.
Another way to express this is that q(t) = eiω0t and ω0 = 2π f0.
Now, if you wanted to draw the x(t) = cos(2π f0t) and the following graph represents the spectrum of this
signal.

We can actually construct the cosine signal from the eit signal we have been analyzing.

eit = cos(t)+ isin(t)

ei2π f0t = cos(2π f0t)+ isin(2π f0t)

e−i2π f0t = cos(2π f0t)− isin(2π f0t)

From these last 2 expressions we can just add these expressions and divide by 2 to get to cosine. This leaves
us with

x(t) = cos(2π f0t) =
ei2π f0t + e−i2π f0t

2

Therefore, the cosine signal is actually complex and is not a single frequency signal.
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