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Euler’s Formula / Inverse Formulas

As we have learned before, Euler’s formula is given by

eit = cos(t)+ isin(t)

and so for any arbitrary function of t, we can map the motion of a particle on the unit circle. For example,
let

θ(t) = 2π f0t +θ0

Given this, we can determine that this maps the motion of a particle on the unit circle with initial position at
an angle θ0 to the x-axis traveling counterclockwise at f0 revolutions per second.

Using Euler’s formula, we can derive two inverse formulas, solving for cos(t) and sin(t) respectively that
have many applications in signal processing, as we shall soon see. To fulfill this derivation, we compute the
following:

eit = cos(t)+ isin(t)

e−it = cos(t)− isin(t)

Adding (2) and (1) and solving for cos(t) yields

cos(t) =
1
2

eit +
1
2

e−it

Similarly, if we subtract (2) from (1), hence eliminating cos(t), and solve for sin(t), we yield

sin(t) =
1
2i

eit − 1
2i

e−it

Spectrum

The spectrum of a signal x is a decomposition of x into a linear combination of complex exponentials (e.g.
eiωt = ei2π f t). Hence, the application of Euler’s inverse formulas comes into play, as signals tend to be
send as sine or cosine waves, and can be interpreted as a linear combination of complex exponentials using
Euler’s inverse formulas.
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Decaying a signal into its complex exponential form can be very useful in plotting a frequency diagram,
X( f ), for an arbitrary function x(t). For example, let

x(t) = ei2π f0t

We can see that the frequency of this signal is simply f0, and so on a frequency diagram, would look as
follows:

Now consider a second signal:
q(t) = cos(2π f0t)

This signal can be decomposed into

q(t) =
1
2

ei2π f0t +
1
2

e−i2π f0t

Here, it is clear that q(t) is really a linear combination of two separate complex exponentials, each with
weight 1

2 . The frequency diagram for such a signal would thus look as follows:

We now work through an example problem:

r(t) = 2cos(200πt)cos(2πt)

(a) Plot r(t) by hand.

(b) Break down r into its constituent frequencies.

We can approach (a) but noting that the cosine wave with the lower frequency can be used to serve as a bound
as the cosine wave with higher frequency varies and is limited. This kind of pattern is used to produce a
periodic beat frequency, and can be plotted as follows:
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We then approach (b) by utilizing Euler’s inverse formula. Substituting the corresponding values for cos(t)
into the given signal and simplifying, we obtain the result

r(t) = cos(2π101t)+ cos(2π99t)

Hence we see the constituent frequencies of the given signal are 101Hz and 99Hz respectively.

Separating Signals

We now learn how to obtain independent "packets" of information transmitted by a signal. The simplest case
is a signal carrying two packets of information, X1 and X2, each on its own separate constituent frequency
f1 and f2 which are related to a fundamental frequency f0 as follows:
f1 = k1 f0 and f2 = k2 f0 where k1 and k2 are integers.
Such a signal would be represented as

x(t) = X1cos(2π f1t)+X2cos(2π f2t)

To separate such a signal, we use the basic calculus method of computing the average value of a continuous
function. This is done by the formula

favg =
1

b−a

∫ b

a
f (x)dx

Using this, a clever trick to isolate X1 from X2 is to find the average value of f (t) = x(t)cos(2π f1t) over one
period of the function (of T0 = 1/ f0). This simplifies as follows:
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favg =
1
T0

∫ T0

0
X1cos2(2π f1t)+X2cos(2π f2t)cos(2π f1t)dt

favg =
1
T0

∫ T0

0

X1

2
+

X1

2
cos(4π f1t)+X2cos(2π f1t)cos(2π f2t)dt

favg =
1
T0

∫ T0

0

X1

2
dt

favg =
X1

2

We can apply an analogous procedure to isolate X2 as well. Using the same concept, we can extend this idea
to more than two transmitted signals, and separate them individually. This very concept is used in many
wireless transmissions such as radio to isolate the desired frequency.

Cartesian Vector Dot Products / Inner Products

As we know, the dot product of two vectors with real components is simply the sum of multiplying their
corresponding components

x ·y =


x1
x2
x3
...

xn

 ·


y1
y2
y3
...

yn


=

n

∑
k=1

xkyk

When the components of the vectors x and y are not all real, then we must use the inner product instead to
compute the directions of two vectors relative to one another. The inner product is computed as

< x,y∗>

which is simply the dot product between x and the complex conjugate of y. Note that the inner product
reduces to the dot product when all vector components are real.
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