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Amplitude modulation

Babak is whistling. We can define fB, Babak’s frequency, as follows:

fB = 3.3 kHz

Then, we can define the wave representing Babak’s whistling as follows:

x(t) = B0 cos(2π(3.3∗103)t)

Why not just transmit this wave x(t) directly? Well, the frequency of Babak’s voice is in a (relatively) low
frequency range called the baseband. Unfortunately, the atmosphere is very unforgiving towards baseband
frequencies.

Also, there is another problem:

c︸︷︷︸
3∗108

= fB λB︸︷︷︸
Wavelength

Generally, the antenna length needs to be ≤ λB
4 . This means that the antenna length must be about 100 km!

Clearly this will not be feasible.

Solution: map to higher frequencies for shorter wavelengths.

Figure 1: Transmission apparatus.
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• x(t) is the information bearing signal.

• c(t) is the carrier signal, at a very high frequency.

Consider once again the previous transmission setup, where:

• fB << fc

• x(t) = ei2π fBt

• c(t) = ei2π fct

• And so y(t) = x(t)c(t) = ei2π( fB+ fc)t .

Figure 2: Spectrum of x,c,y.

Notice that multiplication by c(t) has shifted the spectrum of x(t) over to the right by fc Hz. It has not
stretched the frequency!

In real life, signals (such as a speaking voice) occupy more than just a single pure frequency. Instead, they
typically occupy a certain bandwidth, which determines how much frequency real estate is occupied by this
signal.

Figure 3: Premium real estate in the frequency domain.

What about the relationship between fc and fB?

• Theoretically: fc− fB > 0⇒ fc > fB.

• Actually: We want fc to PWN fB!
(If you did not understand that: call 1-800-GET-LIFE)

Question 1: Why do we have to modulate to get higher frequencies? Could we not directly start with those
higher frequencies?
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Answer 1: The human voice (fortunately or unfortunately) cannot produce frequencies which are that high.
Also, the voice box produces acoustic (longitudinal) waves rather than electromagnetic waves.

Question 2: Why do high frequencies dissipate as they travel through the atmosphere?

Answer 2: Atmospheric physics. The atmosphere acts like a band-pass/high-pass filter. Also, acoustic
waves do not move very far due to physical movement of air molecules, but electromagnetic waves move
much faster.

Question 3: Does the speed v of the wave matter?

Answer 3: Not in this case. It has more to do with the fact that physically moving air molecules requires
energy.

What about cosine modulation - modulating with a real signal instead of an imaginary one? Consider the
setup in figure 1, configured as follows:

• x(t) = a signal which occupies bands − fB to fB

• c(t) = cos(2π fct)

Figure 4: The result of cosine modulation.

Question 1: What is with the negative frequency business?

Answer 1: A negative frequency is a phasor which goes clockwise. To form a cosine wave, two phasors in
sync, one going clockwise and the other going counterclockwise, are required to make the cosine wave real.
The two phasors’ imaginary components always add to zero, leaving only a real cosine wave.

Question 2: Why the 1
2 factor?

Answer 2: It comes from the 1
2 factor from expanding cosine using the inverse Euler formula.
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Meanwhile, at the receiver headquarters...

Consider the following setup for receiving, assuming that the signal y(t) received is the same signal which
was sent at the source. d(t) = cos(2π fct).

Figure 5: Receiving the signal.

q(t) = y(t)cos(2π fct)

= x(t)cos(2π fct)cos(2π fct)

= x(t)cos2(2π fct)

=
x(t)

2
+

x(t)
2

cos(2π2 fct)

Previously: x(t) = X0 (constant, average to recover)

Now: x(t) is not a constant, but fB << fc. Notice that x(t) varies much slower than the carrier wave c(t).

Figure 6: cos(2π fBt)cos(2π fct)

Claim: averaging gives a darn good approximation to x(t).
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q(t) =
cos(2π fBt)

2︸ ︷︷ ︸
around 0 (baseband)

+cos(2π fBt)cos(2π2 fct)︸ ︷︷ ︸
around 2 fc

Average over 1
Tc

:

=
1
Tc

∫ t+Tc

t
q(τ)dτ

=
cos(2π fBt)

2
Tc

Tc
+0

=
x(t)

2

This works because the slowly-varying cosine wave stays about the same while the fast-varying cosine wave
completes a period.

Figure 7: Zoomed in view. The envelope barely moves while the fast-varying cosine completes many periods.

EECS 16A, Spring 2015, Note 22 5



Low-pass filters?

Averaging is a type of low-pass filter which smooths out high frequencies.

Figure 8: A wild low-pass filter appeared!

Question 1: How are the fast-varying carrier waves with frequency fc actually generated?

Answer 1: There are physical crystals which oscillate and produce waves. But it is not exactly guaranteed
that the crystal in the transmitter will oscillate in phase with the receiver. In real life there is a a phase shift
as well as a frequency shift as the wave travels.

Assumptions so far
• Received y(t) is the same as the transmitted y(t).

• Receiver and transmitter are in phase and at the exact same frequency.

What if that is not the case?

Consider again the transmitter setup in figure 1 as well as the receiver setup in figure 5.

As before, c(t) = cos(2π fct) but this time, d(t) = cos(2π( fc +∆ f )t) to account for frequency drift (think
of the Doppler effect or red-shifting of distant stars). Of course, ∆ f << fB << fc.

q(t) = x(t)cos(2π fct)cos(2π( fc +∆ f )t)

=
x(t)

2
(cos(2π(2 fc +∆ f )t)︸ ︷︷ ︸

High frequency, about 2 fc

+cos(2π∆ f )︸ ︷︷ ︸
Baseband term

)

Pass q(t) thrgouh a low-pass filter (such as an average of appropriate window) to obtain r(t) as below:

r(t) =
cos(2π∆ f t)

2
x(t)

Plugging in some test case values: if fc is a radio frequency of about 1 MHz, then ∆ f might be 1 Hz (typical
drift is ≈ 50 Hz). As a result, we get r(t) = cos(2πt)x(t). Where did the 1

2 factor go? No, it was not
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forgotten, but rather omitted for clarity, since it is just a scalar constant, which can always be removed by
adjusting the gain of the filter to 2 to eliminate it.

What does this sound like? It is the effect of someone turning up and down the volume knob on the radio
twice a second. What to do?

So far our r(t) was obtained by multiplication with cos(2π( fc +∆ f )t) followed by a low-pass filter. We
can perform the same procedure as outlined in this section to obtain an analogous r2(t) = sin(2πt)x(t) by
multiplying the received signal y(t) by the sine instead of the cosine.

Quick digression: notice that in this scheme we have assumed that x(t) ≥ 0. But if that is not true, we can
still without loss of generality assume that −α ≤ x(t)≤ α . So we can add α to make x̂(t) = x(t)+α which
is indeed always ≥ 0.

Putting it all together

Given the following:

r(t) = cos(2π∆ f t)x(t)

r2(t) = sin(2π∆ f t)x(t)

It should be very straightforward to reconstruct the signal x(t), given r(t) and r2(t). (Hint: consider the
quantity (r(t))2 +(r2(t))2!)
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