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LTI Systems and the Unit Impuise Response

Consider a system H that maps any function f : Z — C to a single function g : Z — C.

Recall that H is linear if, for all x;, x5 : Z — C and for all scalars & and 3, H(ax; [n]+ Bxz[n]) = oH (x1[n]) +

BH (x2[n]).
Let y[n] = H(x[n]). H is time-invariant if for all k,n € Z then y[n — k] = H(x[n — k])

We designate H as a linear, time-invariant system, or an LTI system, if it is both linear and time-invariant.
The rest of our discussion shall focus on the characterization of LTI systems.

To the end of understanding the operation of a given LTI system H, it is useful to provide as input a simple
signal x, and then characterize its output signal y = H(x). Hence, we shall consider the application of the
unit impulse, a signal which we shall denote as 6 [n] and which is defined simply as:

1 ifn=0
5[”]_{ 0  ifn#0

The graph of this function is shown below:

To understand the motivation for choosing this function, consider as an example the signal x[n], which is 0
at all points except 0, 1, and 2, at which it takes on values of 2, 3, and 2, respectively, as shown below:

s
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To relate x[n] to 6[n], we might start by noting that 28[n| represents the leftmost peak of x[n]. Moreover,
we can use shifted versions of 6[n] to represent the other two peaks: the middle peak is 38[n — 1], and the
rightmost one is 26[n — 2]. Moreover, adding the scaled and shifted delta functions merely superimposes
them upon each other, for each of them is nonzero at only one point. Hence we can write x[n] as a sum
of these scaled and shifted delta functions: x[n] = 28[n] +38[n — 1] +26[n —2]. We can verify from the
definition of d[n] that this will indeed produce a function that has the same value as x[n] at all values n.

By a simple extension of the argument above, it is clear that any discrete-time signal can be written as a linear
combination of d[n — k|, for various shifts k. This property is very useful in the analysis of LTI systems,
because simply knowing the response of an LTI system H to &[n] can, by linearity and time invariance, allow
us to easily derive the response of H to any signal. For instance, say that we know that for some LTI system
H, H(8)|n] can be represented by the following graph:
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We note that the response to the peak at 0 in isolation would be the same as the response to d[n], and that
by time-invariance the response to the peak at 1 in isolation would be the same response shifted to the right.
By linearity, we can superimpose these two responses to obtain the final response, which appears as:
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In algebraic terms, we have used LTI system properties to show that the response to x[n] = §[n] + 8[n — 1]
isequal to H(S[n]) + H(8[n—1)).
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Henceforth, we shall refer to the response of a system to §[n| as the unit impulse response, denoted by
h[n]. Now we can formulate the ideas above in a more compact form. Consider an arbitrary discrete-time
signal x[n], and call y[n] = H(x[n]) the response to this signal from an LTI system H. Deconstructing x into
its component delta functions we can write:

And by time invariance and linearity,

This second formulation is known as the convolution sum.

Comp]ex Exponentials as Eigenfunctions

Still considering an LTI system H, we shall now apply the results of our analysis to the output y[n] of the
input signal x[n] = e/®". Using the convolution sum, y[n] can be written as

) e/ hin — k]
k=—c0

But this formulation does not yield any insights, so we use the trick of rewriting the general convolution
sum using the substitution [ = n — k:

oo

yinj= Y xln—1]hl]

[=—c0
Going back to our response to x[n] = ¢/“", we get that

S}

yln] =ZZ /(1] (1)
- Y (e x e IO 0)
= /P x i PR 3)
= ej“’”H(le_j:; )
= H(e/®)e/™" 6))

where in (4) and (5) we have denoted the infinite sum Y, e /®/h[l] as H(e/®) to emphasize that it does

|=—c

have any dependence on n, but does depend on the frequency @ and the system H. This result shows that
complex exponentials are eigenfunctions of LTI systems: the output signal obtained by inputting a complex
exponential e/®" is a scaled version of that exponential.

EECS 16A, Spring 2015, Note 24 3



Frequency Response of Complex Exponentials

Now we turn our attention to the family of complex exponentials x[n] = ¢/®". Consider what these functions
look like for, say, @ = 0:
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Or for w = 7:
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These functions are actually the two extremes in terms of frequency in Z: the first is always 1, and the
second switches at every point from -1 to 1 or vice versa, being 1 at n = 0. It is not possible for a complex
exponential in our domain to oscillate faster than e/*, since we only sample the complex exponential once
every unit of time.

Now consider the LTI filter,
x[n] +x[n+1]
2

If we input x[n] = e/%" = 1, the slowest frequency, our response is

y[n] =

0 4 gJ0(n+1) |
2 T

In general, from the formula for y[n], we see that the output resulting from input x[n] = /%" is

ejwn+ejw(;1+l) _ 1+ejwejwn
2 2

Note the connection to the fact that complex exponentials are eigenfunctions of LTI systems! What is
H(e/®) in this case?
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Consider how y[n| depends on @, the frequency of the input oscillator. If @ is close to 0 (i.e. the input
oscillation is very slow) the output signal will be only slightly attenuated, and if @ approaches 7, the highest
frequency for the input oscillator, the output signal approaches 0. The following graph illustrates how the

magnitude of the attenuation factor # changes with ®.
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This graph confirms that the two-point averaging filter is in fact a low-pass filter! Higher frequencies are
attenuated, while lower frequencies are not.
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