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LTI Systems and the Unit Impulse Response

Consider a system H that maps any function f : Z→ C to a single function g : Z→ C.

Recall that H is linear if, for all x1,x2 :Z→C and for all scalars α and β , H(αx1[n]+βx2[n]) =αH(x1[n])+
βH(x2[n]).
Let y[n] = H(x[n]). H is time-invariant if for all k,n ∈ Z then y[n− k] = H(x[n− k])

We designate H as a linear, time-invariant system, or an LTI system, if it is both linear and time-invariant.
The rest of our discussion shall focus on the characterization of LTI systems.

To the end of understanding the operation of a given LTI system H, it is useful to provide as input a simple
signal x, and then characterize its output signal y = H(x). Hence, we shall consider the application of the
unit impulse, a signal which we shall denote as δ [n] and which is defined simply as:

δ [n] =
{

1 if n = 0
0 if n 6= 0

The graph of this function is shown below:

To understand the motivation for choosing this function, consider as an example the signal x[n], which is 0
at all points except 0, 1, and 2, at which it takes on values of 2, 3, and 2, respectively, as shown below:
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To relate x[n] to δ [n], we might start by noting that 2δ [n] represents the leftmost peak of x[n]. Moreover,
we can use shifted versions of δ [n] to represent the other two peaks: the middle peak is 3δ [n− 1], and the
rightmost one is 2δ [n− 2]. Moreover, adding the scaled and shifted delta functions merely superimposes
them upon each other, for each of them is nonzero at only one point. Hence we can write x[n] as a sum
of these scaled and shifted delta functions: x[n] = 2δ [n] + 3δ [n− 1] + 2δ [n− 2]. We can verify from the
definition of δ [n] that this will indeed produce a function that has the same value as x[n] at all values n.

By a simple extension of the argument above, it is clear that any discrete-time signal can be written as a linear
combination of δ [n− k], for various shifts k. This property is very useful in the analysis of LTI systems,
because simply knowing the response of an LTI system H to δ [n] can, by linearity and time invariance, allow
us to easily derive the response of H to any signal. For instance, say that we know that for some LTI system
H, H(δ )[n] can be represented by the following graph:

and we want to predict H(x) where x[n] is as follows:

We note that the response to the peak at 0 in isolation would be the same as the response to δ [n], and that
by time-invariance the response to the peak at 1 in isolation would be the same response shifted to the right.
By linearity, we can superimpose these two responses to obtain the final response, which appears as:

In algebraic terms, we have used LTI system properties to show that the response to x[n] = δ [n]+ δ [n−1]
is equal to H(δ [n])+H(δ [n−1]).
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Henceforth, we shall refer to the response of a system to δ [n] as the unit impulse response, denoted by
h[n]. Now we can formulate the ideas above in a more compact form. Consider an arbitrary discrete-time
signal x[n], and call y[n] = H(x[n]) the response to this signal from an LTI system H. Deconstructing x into
its component delta functions we can write:

x[n] =
∞

∑
k=−∞

x[k]δ [n− k]

And by time invariance and linearity,

y[n] =
∞

∑
k=−∞

x[k]h[n− k]

This second formulation is known as the convolution sum.

Complex Exponentials as Eigenfunctions

Still considering an LTI system H, we shall now apply the results of our analysis to the output y[n] of the
input signal x[n] = e jωn. Using the convolution sum, y[n] can be written as

∞

∑
k=−∞

e jωkh[n− k]

But this formulation does not yield any insights, so we use the trick of rewriting the general convolution
sum using the substitution l = n− k:

y[n] =
∞

∑
l=−∞

x[n− l]h[l]

Going back to our response to x[n] = e jωn, we get that

y[n] =
∞

∑
l=−∞

e jω(n−l)h[l] (1)

=
∞

∑
l=−∞

(e jωn× e− jωl)h[l] (2)

= e jωn×
∞

∑
l=−∞

e− jωlh[l] (3)

= e jωnH(e jω) (4)

= H(e jω)e jωn (5)

where in (4) and (5) we have denoted the infinite sum
∞

∑
l=−∞

e− jωlh[l] as H(e jω) to emphasize that it does

have any dependence on n, but does depend on the frequency ω and the system H. This result shows that
complex exponentials are eigenfunctions of LTI systems: the output signal obtained by inputting a complex
exponential e jωn is a scaled version of that exponential.
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Frequency Response of Complex Exponentials

Now we turn our attention to the family of complex exponentials x[n] = e jωn. Consider what these functions
look like for, say, ω = 0:

Or for ω = π:

These functions are actually the two extremes in terms of frequency in Z: the first is always 1, and the
second switches at every point from -1 to 1 or vice versa, being 1 at n = 0. It is not possible for a complex
exponential in our domain to oscillate faster than e jπn, since we only sample the complex exponential once
every unit of time.

Now consider the LTI filter,

y[n] =
x[n]+ x[n+1]

2

If we input x[n] = e j0n = 1, the slowest frequency, our response is

e j0n + e j0(n+1)

2
= 1

In general, from the formula for y[n], we see that the output resulting from input x[n] = e jωn is

e jωn + e jω(n+1)

2
=

1+ e jω

2
e jωn

Note the connection to the fact that complex exponentials are eigenfunctions of LTI systems! What is
H(e jω) in this case?
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Consider how y[n] depends on ω , the frequency of the input oscillator. If ω is close to 0 (i.e. the input
oscillation is very slow) the output signal will be only slightly attenuated, and if ω approaches π , the highest
frequency for the input oscillator, the output signal approaches 0. The following graph illustrates how the
magnitude of the attenuation factor 1+e jω

2 changes with ω .

This graph confirms that the two-point averaging filter is in fact a low-pass filter! Higher frequencies are
attenuated, while lower frequencies are not.
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