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1. Frequency Response of a Discrete-Time LTI System:

Diagram of system:

x(n) = eiωn H y(n) =H(ω)eiωn

Property: The frequency response H(ω) of a system is periodic with period 2π .

H(ω) = ∑
n

h(n)e−iωn

H(ω +2π) =H(ω)

Proof of periodicity:

x(n) = ei(ω+2π)n H y(n) =H(ω +2π)ei(ω+2π)n

Consider the input x(n)= ei(ω+2π)n. Since ei(ω+2π)n = eiωn ·ei2πn and e2πn = 1∀n ∈Z, then the scalar H(ω+2π)=
H(ω) since the system is one-to-one (produces one output for one input).

Changing from radians to hertz using ω = 2πφ :

x(n) = ei2πφn Ĥ y(n) = Ĥ(φ)ei2πφn

Where Ĥ(φ) = ∑n h(n)e−i2πφn and Ĥ(φ) =H(ω)

∣∣∣∣
ω=2π

.

2. Convolution

x(n) h(n) y(n) = (x∗h)(n)

By commutativity we can represent the impulse response as the input and the input as the impulse response, yielding:

h(n) x(n) y(n) = (h∗ x)(n)

3. Discrete-Time Fourier Transform

The quantity X(ω) = ∑n x(n)e−iωn is called the Discrete Time Fourier Transform of x(n). The Fourier Transform
takes a signal from the time domain and returns the frequency domain representation of the signa.
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Change of bases
Changing from the time domain to the frequency domain can actually be understood just as a simple change of

basis! The time and frequency domain representations of a signal are simply two different representations of the same
quantity. Just as one vector can have two different representations with two different bases, one signal can also have
two different representations.

It turns out the basis that represents the frequency domain (i.e. the basis of complex exponentials is also orthogo-
nal).

Consider X(φ) = ∑n x(n)e−i2πφn which is the frequency domain representation of a signal. Let Ψn(φ) = e−i2πφn.
Let X̂ = ∑n x(n)Ψn. Assume that Ψk⊥Ψl for k 6= l (We assume this for now and will prove it later.).

How do we determine x(k)? We project X̂ onto Ψk using the inner product.

Since Ψk⊥Ψl for k 6= l, we know that the inner product < Ψk,Ψl >= 0.

< X̂ ,Ψk >=< ∑
n

x(n)Ψn,Ψk >

= ∑
n

x(n)< Ψn,Ψk >

= x(k)< Ψk,Ψk >

x(k) =
< X̂ ,Ψk >

< Ψk,Ψk >

Since we are in the 1-periodic space of functions:

< F,G >,
∫
<1>

F(φ)G∗(φ)dφ

< Ψk,Ψk >=
∫ 1

0
e−i2πφk ei2πφk dφ

= 1

< Ψk,Ψl >=
∫ 1

0
e−i2πφk ei2πφl dφ

=
ei2π(l−k)−1

i2π(l− k)

=
0

IDK and IDC
As long as we make sure the denominator is non-zero we are fine.

= 0

So the inner product gives 1 for l− k = 0 and 0 otherwise. This is just like the delta function!

< Ψk,Ψl >= δ (l− k)

We use this now to compute x(k) and substitute the inner product in x(k) =
< X̂ ,Ψk >

< Ψk,Ψk >
. Now we are able to go

from the frequency domain back to the time domain with the general formula:

x(k) =
∫ 1

0
X̂(φ)ei2πφk dφ (1)

We can now represent the back and forth between time domain and frequency domain.

x(k) =
∫ 1

0
X̂(φ)ei2πφk dφ

F
�

F−1
X(φ) = ∑

n
x(n)e−i2πφn (2)

EECS 16A, Spring 2015, Note 26 2



The above expression is true when frequency is represented in hertz. To represent frequency in radians, divide by
2π when changing from frequency to time domain because the function is 2π-periodic.

Notice that the functions of n and φ are sums (either by summation or integral, which is a sum of infinitesimally
small deltas), and the fact that each term in the sum has some scalar multiplied by a form of Ψn. This means that a
signal is a linear combination of “basis vectors” (here we are dealing with infinite dimensional vectors, but the basic
concepts are similar to finite length vectors) in both the time and frequency domain. We’ve also shown that the inner
product of different bases is 0, proving our assumption that the bases were orthogonal.
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