1. Voltage Divider

(a) Find the voltage V_R and current i_R in the following circuits. Use KCL/KVL and Ohm’s law.

i.
\[V_R = 5V, \quad i_R = 5mA \]

ii.
\[V_R = 0V, \quad i_R = 0mA \]

iii.
\[V_R = 2.5V, \quad i_R = 2.5mA \]

iv.
\[V_R = \frac{5}{3}V, \quad i_R = \frac{10}{3}mA \]

v.
\[V_R = 4V, \quad i_R = 1mA \]

vi.
\[V_R = \frac{9}{2}V, \quad i_R = \frac{1}{2}mA \]

(b) Find the resistance R that achieves the voltage V_R. What is the current i_R?
i. $R = 2\,\text{k}\Omega, \, i_R = \frac{5}{4}\,\text{mA}$

ii. $R = 8\,\text{k}\Omega, \, i_R = 0.5\,\text{mA}$

(c) Using the resistance R from the last part (b. ii), what happens to the output voltage V_R (and the current i_R) if we attach a R_L of 8 kΩ to the output as depicted in the following circuit:

Answer: $V_R = \frac{10}{3}\,\text{V}, \, i_R = \frac{10}{21}\,\text{mA}$

(d) What if R_L is $\frac{8}{3}\,\text{k}\Omega$? What if R_L is 80 kΩ?

Answer: $V_R = 2.5\,\text{V}, \, i_R = \frac{5}{16}\,\text{mA}$ and $V_R = \frac{40.5}{31}\,\text{V}, \, i_R = \frac{5.5}{31}\,\text{mA} = \frac{25}{31}\,\text{mA}$

(e) Say that we want to support values for R_L in the range of 8kΩ to 10kΩ. We would like to maintain 4V across this resistor, R_L. How can we approximately achieve this by setting R_1 and R_2 in the following circuit?
Answer: We need $\frac{R_2}{R_1+R_2} = \frac{4}{5}$ and $R_2 \ll 8\,\Omega$ (and as a result also $R_1 \ll 8\,\Omega$).