1. Voltage Divider

(a) Find the voltage V_R and current i_R in the following circuits. Use KCL/KVL and Ohm's law.

i. ![Circuit i]

ii. ![Circuit ii]

iii. ![Circuit iii]

iv. ![Circuit iv]

v. ![Circuit v]

vi. ![Circuit vi]

(b) Find the resistance R that achieves the voltage V_R. What is the current i_R?
(c) Using the resistance R from the last part (b. ii), what happens to the output voltage V_R (and the current i_R) if we attach a R_L of $8 \text{k}\Omega$ to the output as depicted in the following circuit:

![Circuit Diagram](image)

(d) What if R_L is $\frac{8}{3} \text{k}\Omega$? What if R_L is $80 \text{k}\Omega$?

(e) Say that we want to support values for R_L in the range of $8 \text{k}\Omega$ to $10 \text{k}\Omega$. We would like to maintain 4V across this resistor, R_L. How can we approximately achieve this by setting R_1 and R_2 in the following circuit?

![Circuit Diagram](image)