
EECS 16A Designing Information Devices and Systems I
Spring 2016 Elad Alon, Babak Ayazifar Homework 11

This homework is due April 19, 2016, at Noon.

1. Homework process and study group

Who else did you work with on this homework? List names and student ID’s. (In case of hw party, you can
also just describe the group.) How did you work on this homework?
Working in groups of 3-5 will earn credit for your participation grade.

2. Mechanical Gram-Schmidt

(a) Use Gram-Schmidt to find a matrix U whose columns form an orthonormal basis for the column space
of V .

V =


1 1 1
0 1 1
0 1 1
0 0 1
0 0 1

 (1)

and show that you get the same resulting vector when you project w = [ 1, −1, 0, −1, 0 ]T onto V and
onto U , i.e. show that

V (V TV )−1V T w =U(UTU)−1UT w (2)

(b) Use Gram-Schmidt to find a matrix U whose columns form an orthonormal basis for the column space
of V .

V =


1 1 −1
0 1 −1
1 0 0
1 −1 1
0 −1 1

 (3)

and show that you get the same resulting vector when you project w = [ 1, −1, 0, −1, 0 ]T onto V and
onto U .

3. The Framingham Risk Score

For most of the parts of this problem, your work will be done in the appropriate section of the ipython
notebook.

In Homework 1, we did a problem where we calculated the parameters of the Framingham risk score for
predicting cardiovascular disease (CVD). In this problem, we will revisit the parameters of the Framingham
risk score in a more realistic setting using the more sophisticated optimization tool of linear least squares. In
the problem in Homework 1, we determined four parameters of Framingham risk score from the data from
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four patients – this amounts to solving four equations with four unknowns. This makes sense if we knew the
correct parameters originally but then forgot them. Suppose, however, that we were trying to come up with
the correct parameters for the Framingham risk score in the first place. How would we do it?

As a review, the Framingham risk score estimates the 10-year cardiovascular disease (CVD) risk of an
individual. There are multiple factors (predictors) that weigh in the calculation of the score. In Homework
1, we simplified the score to only use four factors. Here we will look at more complex version of the score
that takes into account six factors including age, total cholesterol, level of high-density lipoprotein (HDL)
cholesterol, systolic blood pressure (SBP), whether or not the individual smokes, and whether or not the
individual is diabetic.

Scores like this are determined empirically after tracking the characteristics of many medical patients. Once
we have data from hundreds or thousands of test subjects, we want to find the parameters that best model the
data we are seeing so that we can use our score to predict the probability of heart disease for a new patient.
Of course there will be some variability in the probability of heart to disease for each individual but we want
to design the parameters of our score so that it predicts their risk as closely as possible.

Linear least squares is a powerful tool for fitting these kind of models to minimize the error between the
observed risk of heart disease for each individual and the predicted risk from the model. Linear least squares
can even be a powerful tool in many cases when we expect our model to be nonlinear in the data. As long
as we can transform the problem so that the model is linear in the parameters then we can use linear
least squares. For example in the Framingham case, we have reason to believe (from medical modeling
considerations) that the probability of the individual suffering from CVD in the next 10 years has the form

p = 1−0.95e(R−26.1931)
(4)

where the score R is calculated based on the values of age, total cholesterol (TC), HDL cholesterol, systolic
blood pressure (SBP), whether or not the patient is diabetic (DIA), and whether or not the patient smokes
(SMK) as follows

R =x1 · ln
(

AGE (years)
)
+ x2 · ln

(
TC (mg/dL)

)
+

x3 · ln
(

HDL (mg/dL)
)
+ x4 · ln

(
SBP (mm Hg)

)
+

x5 ·
(

DIA (binary)
)
+ x6 ·

(
SMK (binary)

)
(5)

DIA and SMK are binary variables that indicate whether or not the subject has diabetes and smokes respec-
tively whereas AGE, TC, HDL, and SBP are all numeric values. Note also that AGE, TC, HDL, and SBP
are passed through the natural log function ln(·) where as DIA and SMK are not. For patient k, we will
represent the probability as pk and the score as Rk.

(a) We want to transform the probabilities and the input data (AGE, TC, HDL, SBP, DIA, SMK) for patient
k into the form

bk = x1Ak
1 + x2Ak

2 + x3Ak
3 + x4Ak

4 + x5Ak
5 + x6Ak

6 (6)

in order to solve for the parameters~x= [x1, x2, x3, x4, x5, x6]
T . How can we transform the probabilities

and the input data to express Equation (4) in the form of Equation (6), i.e. express bk, Ak
1, Ak

2, Ak
3, Ak

4, Ak
5

and Ak
6 be in terms of pk, AGEk, TCk, HDLk, SBPk, DIAk, SMKk. In the ipython notebook, load in the

data file CVDdata.mat and apply these transformations to the appropriate variables.
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Credit: The data was obtained from the Center for Disease Control and Prevention’s (CDC) National
Health and Nutrition Examination Survey (NHANES) dataset (October 2015).
http://www.cdc.gov/nchs/nhanes.htm

(b) Now that we have transformed the problem into a linear problem, we want to use linear least squares
to estimate the parameters~x. In order to do this we set up a system of equations in matrix form

~b = A~x

where A is a tall matrix and ~b is a tall vector. What form should ~b and A have in terms of bk,
Ak

1, Ak
2, Ak

3, Ak
4, Ak

5, Ak
6? The data we loaded in python is for 91 patients. Construct ~b and A us-

ing the loaded data. What are the dimensions of~b and A?
(c) We want to choose our estimate ~̂x to minimize ||~b−A~x||2. Use the linear least squares formula to find

the best fit parameters ~̂x. What is the ~̂x that you found?

(d) Now that we’ve found the best fit parameters ~̂x, write an expression for ~̂b, our model’s prediction of
the values of~b given the data A and our estimate of the parameters ~̂x and compute the squared error
||~b−~̂b||2. What is the squared error that you computed?

(e) Since this problem has many parameters it is difficult to visualize what is going on. One thing we can
do to get a feel for the data and check that our fit is good is to plot it in a lower dimensional subspace.
For example, we could plot b by A1 or A2 or A3 individually. (A1 is the vector of Ak

1’s for all patients.
It is the first column of A. Similarly for A2 and A3.) In your ipython notebook, plot b by A1, b by A2,
and b by A3 individually using the plotting option ’ob’ to plot the data as blue dots. For each plot
you should see a blue point cloud. What is actually happening here is that we’re projecting the data
onto the A1-b plane, the A2-b plane, and the A3-b plane respectively. Now plot your models prediction
b̂ by A1, A2, and A3 on the appropriate plots using the plotting option ’or’ to plot the predictions as
red dots (refer to the ipython notebook for reference code). Does it look like your model’s fit is good?

(f) To better visualize the linearity of the model, we will calculate the risk as a function of A2 alone and
plot it. The rest of the predictors will be fixed in this part. We will use the following values for the other
parameters. Age=55 years, HDL=25 mg/dL, SBP=220 mm Hg, DIA=1 and SMK=1. In the IPython
notebook, we have generated a block of code that you need to complete to make the calculation of
predicted b values from the above parameters. Fill the code and plot the estimated b values vs A2
values. Is the plot linear?
Hint: don’t forget to apply the appropriate transformation to the different parameters.

(g) Try changing the parameters ~̂x slightly and re-plotting. Does it look like the fit is getting better or
worse? Is the squared error increasing or decreasing?

(h) (BONUS) Transform b and b̂ back into the form of p and transform A1, A2, A3 back into the form of
AGE, TC, and HDL and re-plot. What do you see?

(i) (BONUS) Use the values for b from part (f) to calculate p as a function of TC. Plot the curve p vs TC.
Is the plot linear? What does this plot portray?

Note: Some of the values in the algorithm were modified from the original study values.

4. Finding Signals in Noise
Disclaimer: This problem looks long. But almost all of the parts only involve running provided IPython
code, and commenting on the output. The last part is open-ended, but can be done by re-using code from
the previous parts. It is important to understand the previous parts in order to tackle the last part.

In this problem, we will explore how to use correlation and least-squares to find signals, even in the presence
of noise and other interfering signals.
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(a) Suppose there is a transmitter sending a known signal s1, which is periodic of length N = 1000. Say~s1
is chosen to be a random {+1,−1} vector (for example, by tossing a coin N times and replacing every
heads with +1 and every tails with −1). For convenience, let us also normalize s1 to norm 1. That is,
the vector~s1 looks like:

~s1 =
1√
n

[
+1 −1 −1 +1 −1 . . .

]
(Where the ±1 entries are chosen by random coin toss).

We claim that such a vector~s1 is “approximately orthogonal” to circular-shifts of itself. That is, if~s( j)
1

denotes circularly-shifting s1 by j, then for all j 6= 0:∣∣∣〈~s1,~s
( j)
1

〉∣∣∣/ ε

for some small epsilon.
Run the provided IPython code to generate a random~s1, and plot its autocorrelation (all inner-products
with shifted versions of itself). Run this a few times, for different random vectors ~s1. Around how
small are the largest inner-products

〈
~s1,~s

( j)
1

〉
, j 6= 0?

Recall that we normalized such that 〈~s1,~s1〉= 1.

(b) Suppose we received a signal y, which is s1 delayed by an unknown amount. That is,

~y =~s( j)
1

for some unknown shift j. To find the delay, we can choose the shift j with the highest inner-product〈
~s( j)

1 ,~y
〉

.

Run the provided IPython code to plot the cross-correlation between~y and~s1 (ie, all the shifted inner-
products). Can you identify the delay? Briefly comment on why this works, using the findings from
the previous part. (Hint: What does

〈
~s(k)1 ,~y

〉
look like, for k = j? For k 6= j?)

(c) Now suppose we received a slightly noisy signal:

~y =~s( j)
1 +0.1~n

where the “noise” source~n is chosen to be a random normalized vector, just like s1.
Run the provided IPython code to compute 〈~s1,~n〉. Run this a few times, for different random choices
of s1,n. Around how small is | 〈~s1,~n〉 |? How does this compare to

〈
~s1,~s

( j)
1

〉
, from your answer in part

(a)?

(d) Can we identify the delay from this noisy reception? In this case, we do not know the noise~n, and we
do not know the delay j. (But, as before, we know the signal~s1 being transmitted).
Run the provided IPython code to plot the cross-correlation between ~y and ~s1. Briefly comment on
why this works to find the delay, using the findings from the previous part.

(e) What if the noise was higher? For example:

~y =~s( j)
1 +~n

Does cross-correlation still work to find the delay? (Use the provided IPython notebook).
What about very high noise?

~y =~s( j)
1 +10~n

Does cross-correlation still work to find the delay? If not, can you explain why? (use findings from
previous parts).
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(f) Now suppose there are two transmitters, sending known signals~s1 and~s2 at two unknown delays. That
is, we receive

~y =~s( j)
1 +~s(k)2

for unknown shifts j,k. Both signals~s1 and~s2 are chosen as random normalized vectors, as before.
We can try to find the first signal delay by cross-correlating~y with~s1 (as in the previous parts). Sim-
ilarly, we can try to find the second signal delay by cross-correlating ~y with ~s2. Run the provided
IPython code to estimate the delays j,k. Does this method work to find both delays? Briefly comment
on why or why not.

(g) Now, suppose the second transmitter is very weak, so we receive:

~y =~s( j)
1 +0.1~s(k)2

Does the method of the previous part work reliably to find signal s1? What about s2? (Run the provided
code a few times, to test for different choices of random signals). Briefly justify why or why not.
(Hint: ~s1 looks like “noise” when we are trying to find ~s2. Based on the previous parts, would you
expect to be able to find~s2 under such high noise?)

(h) To address the problem of the previous part, suppose we use the following strategy: First, cross-
correlate to find the delay j of the strongest signal (say,~s1). Then, subtract this out from the received
~y, to get a new signal~y′ =~y−~s( j)

1 . Then cross-correlate to find the second signal in~y′.
Run the provided IPython code to test this strategy for the setup of the previous part (with a strong and
weak transmitter). Does it work? Briefly comment on why or why not.

(i) Finally, suppose the amplitudes of the sent signals are also unknown. That is:

~y = α1~s
( j)
1 +α2~s

(k)
2

for unknown amplitudes α1 > 0, α2 > 0, and unknown shifts j,k.
Can we use inner-products (cross-correlation) to find the amplitudes as well? For example, suppose
we find the correct shift j via cross-correlation. Then, briefly comment on why the following holds:〈

~s( j)
1 ,~y

〉
≈ α1

Run the provided IPython notebook to try this method of estimating the coefficients α1,α2. Roughly
how close are the estimates to the actual amplitudes? (Run the code a few times, to test different
choices of random signals).

(j) Repeat the above for when there is some additional noise as well:

~y = α1~s
( j)
1 +α2~s

(k)
2 +0.1~n

Roughly how close are the estimates to the actual amplitudes? (Run the code a few times, to test
different choices of random signals).

(k) Let us try to improve the coefficient estimates. Once we have identified the correct shifts j,k, we can
setup a Least-Squares problem to find the “best” amplitudes α1,α2 such that

~y≈ α1~s
( j)
1 +α2~s

(k)
2

Set up a Least-Squares problem in the form

min ||A~x−~b||
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to estimate α1,α2. What is the matrix A and vector b?
(Hint: A will have 1000 rows and 2 columns)
Use the provided IPython notebook to try this method of estimating the coefficients α1,α2. Roughly
how close are the estimates to the actual amplitudes? Did this improve on the strategy from the previous
part?

(l) Now try to use these tools on your own. Suppose there are 3 transmitters, transmitting known signals
~s1,~s2,~s3. These signals were chosen as random normalized vectors (as above). You received a combi-
nation of these signals at unknown delays and unknown amplitudes, and corrupted by some unknown
noise:

~y = α1~s
( j)
1 +α2~s

(k)
2 +α3~s

(l)
3 +0.005~n

(Where~n was also chosen as a random normalized vector as above).
You are provided with the known signals ~s1,~s2,~s3 and the received signal ~y in the IPython notebook.
Try to find the unknown delays j,k, l. (Hint: Some of the signals may be weak).
There is a test function provided that will try to “decode” your candidate shifts j,k, l into a message.
You should recognize the message.
Describe your procedure, and include your entire workflow (any plots you generated, etc) in your
IPython solutions.

5. Sparse imaging

Recall the imaging lab where we have projected masks on an object to scan it to our computer using a single
pixel measurement device, that is, a solar cell! In that lab, the we were scanning a 30× 40 image having
1200 pixels. In order to recover the image, we took exactly 1200 measurements because we wanted our
‘measurement matrix’ to be invertible.

In Tuesday’s lecture we saw that an iterative algorithm that does “matching and peeling” can enable recon-
struction of a sparse vector while reducing the number of samples that need to be taken from it. In the case
of imaging, the idea of sparsity corresponds to most parts of the image being black with only a small number
of light pixels. In these cases, we can reduce the overal number of samples necessary. This would reduce
the time required for scanning the image. (This is a real-world concern for things like MRI where people
have to stay still while being imaged.)

In this problem we have a 2D image I of size 91× 120 pixels, for a total of 10,920 pixels. The image is
made up of mostly black pixels except for 476 of them that are white.

Although the imaging illumination masks we used in the lab consisted of zeros and ones, in this question
we are going to have masks with real values — i.e. the light intensity is going to vary in a controlled way.
Say that we have an imaging mask M0 of size 91× 120. The measurements using the solar cell using this
imaging mask can be represented as follows.

First, let us vectorize our image to~i which is a length 10,920 column vector. Likewise let us vectorize the
mask M0 to ~m0 which is a length 10,920 column vector. Then the measurement using M0 can be represented
as

b0 = ~m>0~i.

Say we have a total of M measurements, each taken with a different illumination mask. Then, these mea-
surements can collectively be represented as

~b = A~i,
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where A is an M×10,920 size matrix whose rows contain the vectorized forms of the illumination masks,
that is

A[ j, :] = m>j ,

where we used the numpy array slicing notation A[ j, :] to denote the jth row of A.

To show that we can reduce the number of samples necessary to recover the sparse image I, we are going to
only generate 6500 masks. The columns of A are going to be approximately uncorrelated with each other.
The following question refers to the part of IPython notebook file accompanying this homework related to
this question.

(a) In the IPython notebook, we call a function simulate that generates masks and the measurements.
You can see the masks and the measurements in the IPython notebook file. We would like you to
complete the function OMP that does the OMP algorithm described in lecture.
Remark: Note that this remark is not important for solving this problem, it is about how such mea-
surements could be implemented in our lab setting. When you look at the vector measurements
you will see that it has zero average value. Likewise the columns of the matrix containing the masks A
also have zero average value. To satisfy these conditions, they need to have negative values. However,
in an imaging system, we cannot project negative light. One way to get around this problem is to find
the smallest value of the matrix A and subtract it from all entries of A to get the actual illumination
masks. This will yield masks with positive values, hence we can project them using our real-world
projector. After obtaining the readings using these masks, we can remove their average value from the
readings to get measurements as if we had multiplied the image using the matrix A.

(b) Run the code rec = OMP((height,width),sparsity,measurements,A) and see the
image being correctly reconstructed from a number of samples smaller than the number of pixels
of your figure. What is the image?

(c) (Bonus) We have supplied code that reads a PNG file containing a sparse image, takes measurements,
and performs OMP to recover it. An example input file is also supplied together with the code. Gen-
erate an image of size 91× 120 pixels of sparsity less than 400 and recover it using OMP with 6500
measurements. Add your IPython notebook outputs. You can answer the following parts of this ques-
tion in very general terms. Try reducing the number of measurements, does the algorithm start to fail
in recovering your sparse image? Why do you think it fails? Make an image having fewer white pixels.
How much can you reduce the number of measurements that need to be taken?

6. Speeding up OMP

Consider the OMP Imaging problem.

(a) Modify the code to run faster by using a Gramm-Schmidt orthonormalization to speed it up. (Edit the
code given to you in prob11.ipynb.)

(b) (Bonus) Do any other modifications you want to further speed up the code.
(Hint: when possible, how would you safely extract multiple peaks corresponding to multiple pixels
in one go and add them to the recovered list? Would this speed things up?)

7. Your Own Problem Write your own problem related to this week’s material and solve it. You may still
work in groups to brainstorm problems, but each student should submit a unique problem. What is the
problem? How to formulate it? How to solve it? What is the solution?
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