Electrical Engineering and Computer Sciences

EECS 16A
First Lecture Plan

• Introductions
• Administrative Details (grading, etc.)
• Overview of 16A’s material and how it fits
• Introduction to the technology ecosystem
Introduce Faculty

• Babak Ayazifar
 ayazifar@eecs.berkeley.edu
 517 Cory
• No surprise visits, please!
 – For one-on-one matters,
 • make appointment by e-mail;
 • provide your availability; and
 • we’ll pick a mutually-convenient slot to meet.
Introduce Faculty

• Elad Alon
 elad@eecs.berkeley.edu
 519 Cory

• Story...

• Other contributors to 16 (besides Babak/Elad):
 – Anant Sahai, Ali Niknejad, Claire Tomlin, Gireeja Ranade, Michel Maharbiz, Laura Waller, Miki Lustig, Vivek Subramanian, Thomas Courtade
Introduce TAs
And we have even more!

• An army of Academic Interns...
Announcements

• No office hours this week
• Tues/Thurs. 8am discussions cancelled
• HW party will focus on iPython installation for those who had failures during lab
• HWo is posted
 – Doesn’t count for grade, but you should do it to get used to the procedure
• All administrative questions should be directed to Reia Cho (and no one else): chor346@berkeley
• Webcast 1 week delay
Important Web Sites

• EECS 16A
 http://inst.eecs.berkeley.edu/~ee16a

• Piazza
 http://piazza.com/
Course Policies

- Illnesses
- Religious Holidays
- Disabled Students Program (DSP) Accommodations
- No Distraction Policy
- Grading
- Class Participation
- Labs and Discussion
- HW Cycle
- Piazza
- Extra Credit
- HW Parties & Tips for Success
Grading

• **No curve**: In theory, each of you can get an A

• Breakdown

 – 30% Cumulative Final
 • Fri, 13 May, 19:00-22:00

 – 30% Midterms
 • Tue, 16 Feb, 19:00-21:00
 • Thu, 17 Mar, 19:00-21:00

 – 15% Labs (Attendance Mandatory; drop one)

 – 15% HWs (drop one)

 – 10% Participation
Interlocking Weekly Homework Cycles

- HW N released Tuesday afternoon
- HW N-1 self-grades due Friday at noon
- HW N HW Party on Fri morning (Woz, 9am-12pm)
- HW N due Tuesday at noon
- HW N solutions released (no late submissions!)
- HW N+1 released Tuesday afternoon
- HW N self-grades due Friday at noon

- Midterm weeks, redoing midterm is a part of HW.
- HW has mechanics, proofs, word problems, and coding.
Course Policies

• Illness policy
• Grading
• Class Participation
• Labs and Discussion
• HW Cycle
• Piazza: www.piazza.com
• Extra Credit
• HW Parties and How to Succeed
Tips for Success in 16A:

• Focus on understanding, get enough sleep, and keep up!

• Suggested cycle (reading, lecture, discussion):
 – Skim the readings in the posted notes before lecture
 – Attend lecture; participate, discuss w/ classmates
 – Read notes actively, mark what is challenging
 – Attend discussion, participate, discuss w/ classmates
 – Reread notes carefully, aim at full mastery
Tips for Success in 16A: Marathon not Sprint (Continued)

• Suggested cycle (HW)
 – Parse the HW
 – Try HW on your own
 – Collaborate in study group and/or attend HW Party
 • Woz, Fri days 09:00-12:00
 – Ask/Lurk and help others on Piazza
 – Write up HW on your own
 – Study solutions carefully and reflect on what you understand;
 keep track of various methods of tackling problems

• Do extra problems, and attend bonus sections that we offer.

• Study with others as well as alone.

• Seek and offer help.
Content Introduction

- All of these extract information from the real world and interact with it; we will be learning how to design and understand these devices & systems!
16A: Information Devices and Systems

• **Imaging/Tomography (~4 wks)**
 • Topics: Basics of linear algebraic thinking and graphs
 • Lab: Single-pixel imager

• **Touchscreens (5 wks)**
 • Topics: Basics of linear circuits and design
 • Lab: Home-made R and C touchscreens

• **Locationing and Google PageRank (5 wks)**
 • Topics: Linear-algebraic optimization, eigenvalues/eigenvectors
 • Lab: Acoustic “GPS”
Some detailed topics for 16A

- Vectors and vector spaces
- Inner products, projection, orthogonality
- Matrices and linear transformations
- Rank and solving systems of linear equations
- Graphs, flows, and matrices
- How to do design and synthesis
- KCL, KVL, Ohm’s Law
- Equivalence, modeling, and abstraction
- Capacitance and charge
- Gain and feedback
- Correlation and interference
- Linear regression and optimization
- Determinants, eigenvalues and eigenvectors
- Diagonalization
EECS Upper Divs: What 16AB feed

<table>
<thead>
<tr>
<th>16AB</th>
<th>Modeling and Algorithms</th>
<th>170, 126, 188, 127</th>
<th>189, 120, 121, 123, 174, 144, 172</th>
<th>Specific Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>16AB</td>
<td></td>
<td></td>
<td></td>
<td>121, 122, 168 Comm+Net</td>
</tr>
<tr>
<td>2070</td>
<td></td>
<td></td>
<td></td>
<td>176, 145B CompBio, Imaging</td>
</tr>
<tr>
<td>61B</td>
<td></td>
<td></td>
<td></td>
<td>191 Quantum</td>
</tr>
<tr>
<td>61A</td>
<td></td>
<td></td>
<td></td>
<td>128, 106, 192 Control + Robotics</td>
</tr>
<tr>
<td>61C</td>
<td></td>
<td></td>
<td></td>
<td>184 Graphics</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>186 Databases</td>
</tr>
<tr>
<td>16AB</td>
<td></td>
<td></td>
<td></td>
<td>164 Compilers</td>
</tr>
<tr>
<td></td>
<td>General Software</td>
<td>162, 161, 169</td>
<td>160, 168, 149</td>
<td>152 Computers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145MO Bio</td>
</tr>
<tr>
<td></td>
<td>General Hardware</td>
<td>105, 140, 151</td>
<td>130, 143, 145L</td>
<td>147 MEMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>117 Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142 Comm ICs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118 Optics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113, 137AB, 134 Power+SolarEnergy</td>
</tr>
</tbody>
</table>
A Little Bit More Background/History
How Did We Get From This...
To This?
In Fact…

Foundations of the Information Age

- Food, Water, and *Electricity*
- Ethics, Liberty, Equality, Freedom of Speech, Justice
 - (regardless of race, ethnicity, gender, and age)
- Access to Information:
 - Telephone, Entertainment, News
- Universal wireless connectivity!

Courtesy Ali Niknejad
Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

- The curve shows transistor count doubling every two years.
- The diagram illustrates the exponential growth in transistor count from 1971 to 2011.
That’s Just One Piece of the Puzzle...
Where This is Used:
Who We’re Training You to Be

You

2016
An example system: iPad Air 2

• Runs apps, but:
 – How is it charged / discharged?
 – What makes the display tick?
 – How does the Wi-Fi work?
 – How does it sense touch on the touch screen?
 – How does it sense motion?
 – How do the “brains” operate?

... and how can I learn stuff so I can work on such cool technology?
Inside an iPad Air 2

Physical world interaction:
- Camera
- Speakers

Communication:
- Antenna

Energy:
- Battery

Display / touch screen

“Brains”: the main board

User interface device:
- Home button

User interface device:
- Home button
The Camera

Goal: Convert light into electrical signals

Get color spatial distribution by using an array of “light” detectors, each under a color filter
Cameras: “Mathematical” Guts

Focus/exposure Control → preprocessing → white-balancing
demosaic → Color transform → Post-processing
Compression → CMOS Image Sensor Integrated Circuit Architecture
Analog-to-Digital Conversion

Figure 1

Digital Logic (Interface, Timing, Processing, Output)
Cameras: Compression

• Compression of 40x without perceptual loss of quality.

• Example of slight overcompression: difference enables x60 compression!