Introduction to Imaging

Imaging

• Everyone knows about cameras...

• What else might you be interested in "imaging"?

Medical Imaging ca. 1895

Need to find a way to see inside without "light"

Medical Imaging Today

All of these were enabled/dramatically advanced by the mathematical and hardware design techniques you will learn in this class!

Imaging In General

(electronics, control, computing, algorithms, visualization, ...)

Simplest Imaging System

 What is the absolute smallest number of components you need to make an imaging system?

Simple Imager Example

Simple Imager Example

Actual Imager: Your Cellphone Camera

• What is the source of light?

- Does it use any moving components?
- How does it figure out which point is which?

Another Example: Ultrasound Imaging

 Sound waves travel into body and an echo signal is recorded. This echo is due to changes in material properties (fat, muscle, fluid, ...)

- The depth dimension is recovered by keeping track of how long it took the echo to come back
- The x-y dimensions are recovered by electronically focusing and steering the sound waves
 - I.e., no moving parts needed (except for the transducer itself)

Imaging Lab #1

Your Setup

An Imager with Just One Sensor?

- After all, today's cameras have millions of pixels...
- Great teaching vehicle: you can actually get a lot out of surprisingly simple designs
 - Once you know the right techniques!
- In some systems the sources and/or detectors might actually be expensive
 - Take this opportunity to learn a little more about how detectors usually work
 - And how we get them to "talk" to our electronic systems

Photodetector Basics

- Let's focus on light as our example source
 - Same basic principles apply to many other detectors
- Turns out that light comes in discrete packets called photons
 - The brighter a source of light is
 - The more photons it is emitting over a given period of time
- An electronic photodetector captures these photons and converts them to electrons
 - Electrons are the basic unit of electrical charge (Q)

So What Do We Do With Those Electrons?

- Simplest option might be to let those electrons build up somewhere over a period of time
 - And then count how many we accumulated
- All electrical elements (including the photodetectors themselves) can actually build up charge (electrons)
 - The more charge they store, the higher the voltage (V) across them
 - The relationship between the amount of charge and the voltage is known as capacitance (C)
 - Defined by Q = C*V
 - The number of electrons flowing through the device per unit time is defined as the current (I)

An Analogy (More Later)

- Key points for now:
 - Current flows from high to low voltage (high pressure to low pressure)
 - These are called "circuits" for a reason the loop has to be closed

Photodetector: The Actual Circuit You'll Use

More Complex Imaging Scenario

- What if we can't shine light (i.e., focus energy) either uniformly on all spots or in just one spot?
- The signal we receive on our detector will be a linear combination of several features of the image from different points.
- Can we recover the original image?
 - In many cases, yes!
 - Will start to see how next...