1. **Gram-Schmidt and QR Factorization**

Compute the QR factorization of the following matrix:

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
2. QR Proofs

(a) Let $A = QR$, where Q is an orthonormal matrix and R is an upper triangular matrix. Show that if A is invertible, then R is invertible.

(b) Let $A = QR$, where A has linearly independent columns, Q is an orthonormal matrix, and R is an upper triangular matrix. Show that A and Q have the same column space.

3. QR Factorization (Fall 2016 Final)

Recall that the solution to a linear least squares problem is a minimization of $\| \vec{b} - A\vec{x} \|^2$. Show that the approximation of \vec{x}, \vec{x}, in this linear least squares formula has an equivalent representation using the QR factorization of A, $(A = QR)$. In other words, express \vec{x} in terms of R, Q, and b. Assume the matrix A is full rank.