EE 16B
 Designing Information Devices and Systems II

 Fall 2015Solutions: Courtesy of John Noonan.
For each problem, assume the op-amp has a nominal gain of $G=100$.

1. Op-Amps Without Feedback

(a) For the circuit above, write $H(\omega)=V_{\text {out }} / V_{\text {in }}$.

Solutions:
$V_{\text {out }}=G\left(V^{+}-V^{-}\right)$
$V^{-}=0 V^{+}=V_{i n}$
Thus, $V_{\text {out }}=G\left(V_{\text {in }}-0\right)=G V_{\text {in }}$
$H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}=G$
(b) If G is 20% lower that its nominal value, what is the percent error in $H(\omega)$ relative to nominal?

Solutions: Since $H(\omega)=G$, the percent error will be 20%.

2. Op-Amps With Feedback

(a) For the circuit above, approximate $V_{\text {out }} / V_{\text {in }}$ using the op-amp golden rules.

Solutions:
Using the Golden Rules, we know that $V^{+}=V^{-}$. And since V^{-}is connected to $V_{\text {out }}$ in negative feedback, $V_{\text {in }}=V_{\text {out }}$. Thus, $\frac{V_{\text {out }}}{V_{\text {in }}}=1$.
(b) Now write $V_{\text {out }} / V_{\text {in }}$ without the second op-amp golden rule (you can still assume no current flows into the amplifier inputs). How close is the result to the approximation from (a)? (Give a percentage.)

Solutions:

$V_{\text {out }}=G\left(V_{\text {in }}-V_{\text {out }}\right)$
$V_{\text {out }}+G V_{\text {out }}=G V_{\text {in }}$
$(1+G) V_{\text {out }}=G V_{\text {in }}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{G}{1+G}$
Thus, as G approaches $\infty, \frac{V_{\text {out }}}{V_{\text {in }}}$ approaches 1 , in which case $V_{\text {out }}=V_{\text {in }}$.
Percent error in $\frac{V_{\text {out }}}{V_{\text {in }}}$ relative to the approximation from (a): $\left(1-\frac{G}{1+G}\right) * 100 \%=\left(1-\frac{100}{101}\right) * 100 \%=$ 1.0\%.
(c) Now assume G is 20% lower that its nominal value. What is the percent error in $V_{\text {out }} / V_{\text {in }}$ relative to the approximation from (a)?

Solutions:

Percent error in $\frac{V_{\text {out }}}{V_{\text {in }}}$ relative to the approximation from (a): $\left(1-\frac{0.8 G}{1+0.8 G}\right) * 100 \%=\left(1-\frac{80}{81}\right) * 100 \%=$ 1.23%.

3. Inverting Amplifier

(a) For the circuit above, approximate $V_{\text {out }} / V_{\text {in }}$ using the op-amp golden rules.

Solutions: Using the golden rules, we get that $\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}$.
(b) Now write $V_{\text {out }} / V_{\text {in }}$ without the second op-amp golden rule (you can still assume no current flows into the amplifier inputs).

Solutions:

$\frac{V_{\text {in }}-V_{A}}{R_{1}}=\frac{V_{A}-V_{\text {out }}}{R_{2}}$
Also, $V_{\text {out }}=G\left(0-V_{A}\right)$
$V_{\text {out }}=-G V_{A}$
$V_{A}=-\frac{V_{\text {out }}}{G}$
$\frac{1}{R_{1}} V_{\text {in }}-\frac{1}{R_{1}} *-\frac{V_{\text {out }}}{G}=-\frac{1}{R_{2}} \frac{V_{\text {out }}}{G}-\frac{V_{\text {out }}}{R_{2}}$
$\frac{1}{R_{1}} V_{\text {in }}=-\left(\frac{1}{R_{1}} \frac{1}{G}+\frac{1}{R_{2}} \frac{1}{G}+\frac{1}{R_{2}}\right) V_{\text {out }}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{1}} \frac{1}{\frac{1}{R_{1}} \frac{1}{G}+\frac{1}{R_{2}} \frac{1}{G}+\frac{1}{R_{2}}}$
$=\frac{-1}{\frac{1}{G}+\frac{R_{1}}{R_{2}} \frac{1}{G}+\frac{R_{1}}{R_{2}}}$
(c) If $R_{1}=100 \Omega$ and $R_{2}=500 \Omega$, find the gain of the circuit using the models from both (a) and (b). What is the percent error?
Solutions:
a: $-\frac{R_{2}}{R_{1}}=-\frac{500}{100}=-5$
b: $\frac{-1}{\frac{1}{100}+\frac{1}{5} \frac{1}{100}+\frac{100}{500}}=-4.72$
About 5.6\% error.
(d) Now assume G is 20% lower that its nominal value and recalculate the gain. What is the new percent error compared to (a)?

Solutions:

a: -5
b: $\frac{-1}{\frac{1}{80}+\frac{1}{5} \frac{1}{10}+\frac{100}{500}}=-4.65$
About 7.0\% error.

