Solutions: Provided by John Noonan.

1. Non-Uniform Delays

Find the delay from point A to point D in the circuit shown above for both rising and falling transitions at point A. Assume the following R and C values:

Inverter	$R_{\mathrm{ON}, N}$	$R_{\mathrm{ON}, P}$	$C_{\text {gate }, N}$	$C_{\text {gate }, P}$
1	$8.5 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	0.2 fF	0.4 fF
2	$2.5 \mathrm{k} \Omega$	$3 \mathrm{k} \Omega$	0.6 fF	1.2 fF
3,4	$1 \mathrm{k} \Omega$	$1.2 \mathrm{k} \Omega$	2.5 fF	5 fF

Solutions:
Rising at A (A high voltage at A):
$t_{A-B}=8.5 \mathrm{k} \Omega * 1.8 \mathrm{fF} * \ln (2)=10.61 \mathrm{ps}$
$t_{B-C}=3 k \Omega * 15 \mathrm{fF} * \ln (2)=31.2 \mathrm{ps}$
$t_{C-D}=1 \mathrm{k} \Omega * 20 \mathrm{fF} * \ln (2)=13.86 \mathrm{ps}$
Thus, $t_{A-D}=55.67 \mathrm{ps}$
Falling at A (A low voltage at A):
$t_{A-B}=10 \mathrm{k} \Omega * 1.8 \mathrm{fF} * \ln (2)=12.48 \mathrm{ps}$
$t_{B-C}=2.5 \mathrm{k} \Omega * 15 \mathrm{fF} * \ln (2)=26.0 \mathrm{ps}$
$t_{C-D}=1.2 \mathrm{k} \Omega * 20 \mathrm{fF} * \ln (2)=16.64 \mathrm{ps}$
Thus, $t_{A-D}=55.12 \mathrm{ps}$

2. Ring Oscillators

(a) Describe the behavior of each circuit drawn above. Assume node A is initially 0 .

Solutions:
Circuit 1: Because there are an EVEN number of inverters, each node would stay at a fixed voltage not a ring oscillator.
Circuit 2: Because there are an ODD number of inverters, circuit 2 creates a ring oscillator. We need an ODD number of inverters to create a ring oscillator.
(b) Circuit 2 is called a ring oscillator or RO. If each inverter in this circuit has $R_{\mathrm{ON}, N}=R_{\mathrm{ON}, P}=5 \mathrm{k} \Omega$ and $C_{\text {gate }, N}=C_{\text {gate }, P}=0.5 \mathrm{fF}$, at what frequency will node A oscillate?
Solutions: Equation: $\tau=R * C * \ln (2)$
$R_{O N, N}=R_{O N, P}=5 \mathrm{k} \Omega$ and $C_{\text {gate }, N}=C_{g a t e, P}=0.5 \mathrm{fF}$.
The frequency will oscillate at $f=\frac{1}{2 n \tau}$ where τ is the time delay at each node and n is the number of nodes (inverters). $R_{O N, N}=R_{O N, P}$ the resistance at the output each node will be the same. The capacitance at the input of each node will also be the same $\left(C_{g a t e, N}+C_{g a t e, P}\right)$.
Thus, $\tau=5 k \Omega *(0.5+0.5) f F * \ln (2)=3.47 p s$, so $f=\frac{1}{2 * 5 * 3.47 p s}=28.9 \mathrm{GHz}$.

3. Ring Oscillators, Really

In reality, it would be difficult to design transistors with the parameters given above because pMOS devices tend to be $1.5-3 \mathrm{x}$ weaker than nMOS devices of the same size. (This is because electrons, the charge carriers for nMOS devices, have a higher mobility than holes, the charge carriers for pMOS devices.) Let's investigate options for a more realistic ring oscillator.
(a) First, we'll try leaving the nMOS and pMOS the same size. Using the same nMOS characteristics as Question 2, use $R_{\mathrm{ON}, P}=10 \mathrm{k} \Omega$ and $C_{\text {gate }, P}=0.5 \mathrm{fF}$ to find the new oscillation frequency of the RO.
Solutions: $R_{O N, N}$ is the same as in $2 \mathrm{~b}, R_{O N, P}=10 \mathrm{k} \Omega, C_{g a t e, N}$ is the same as in 2 b , and $C_{g a t e, P}=0.5 \mathrm{fF}$. The frequency will oscillate at $f=\frac{1}{n *\left(\tau_{1}+\tau_{2}\right)}$ where τ_{1} is the time delay at a PMOS node, τ_{2} is the time delay at a NMOS node, and n is the number of nodes (inverters). The capacitance at the input of each node will be the same $\left(C_{g a t e, N}+C_{g a t e, P}\right)$.

Thus, $\tau_{1}=10 k \Omega *(0.5+0.5) f F * \ln (2)=6.93 p s ; \tau_{2}=5 k \Omega *(0.5+0.5) f F * \ln (2)=3.47 p s$, so $f=\frac{1}{5 *(6.93 p s+3.47 p s)}=19.2 \mathrm{GHz}$.
(b) Next, we'll increase the size of the pMOS to match the nMOS drive strength. Using the same nMOS characteristics as Question 2, use $R_{\mathrm{ON}, P}=5 \mathrm{k} \Omega$ and $C_{\mathrm{gate}, P}=1 \mathrm{fF}$ to find the new oscillation frequency of the RO.
Solutions: $R_{O N, N}$ is the same as in $2 \mathrm{~b}, R_{O N, P}=5 \mathrm{k} \Omega, C_{g a t e, N}$ is the same as in 2 b , and $C_{g a t e, P}=1 \mathrm{fF}$.
The frequency will oscillate at $f=\frac{1}{n *\left(\tau_{1}+\tau_{2}\right)}$ where τ_{1} is the time delay at a PMOS node, τ_{2} is the time delay at a NMOS node, and n is the number of nodes (inverters). The capacitance at the input of each node will be the same $\left(C_{g a t e, N}+C_{g a t e, P}\right)$.

Thus, $\tau_{1}=5 k \Omega *(0.5+1) f F * \ln (2)=5.20 p s ; \tau_{2}=5 k \Omega *(0.5+1) f F * \ln (2)=5.20 p s$, so $f=$ $\frac{1}{5 *(5.20 p s+5.20 p s)}=19.2 G H z$.
(c) If we wanted to use the RO design from part (b) to generate a 1 GHz clock, approximately how many inverter stages would be required?
Solutions: (c) Since 5 inverters produced a 19.2 GHz clock from part (b), in order to produce a 1 GHz clock, we would need about $5 * 19$ inverters $=95$ inverters.

