EE 16B Designing Information Devices and Systems II Fall 2015 Section 5B

Solutions: Provided by John Noonan.

1. Non-Uniform Delays

Find the delay from point A to point D in the circuit shown above for both rising and falling transitions at point A. Assume the following R and C values:

Inverter	$R_{\text{ON},N}$	$R_{\text{ON},P}$	$C_{\text{gate},N}$	$C_{\text{gate},P}$
1	8.5kΩ	10kΩ	0.2fF	0.4fF
2	2.5kΩ	3kΩ	0.6fF	1.2fF
3,4	lkΩ	1.2kΩ	2.5fF	5fF

Solutions:

Rising at A (A high voltage at A): $t_{A-B} = 8.5k\Omega * 1.8fF * ln(2) = 10.61ps$

$$t_{B-C} = 3k\Omega * 15fF * ln(2) = 31.2ps$$

 $t_{C-D} = 1k\Omega * 20fF * ln(2) = 13.86ps$

Thus, $t_{A-D} = 55.67 ps$

Falling at A (A low voltage at A):

 $t_{A-B} = 10k\Omega * 1.8fF * ln(2) = 12.48ps$

 $t_{B-C} = 2.5k\Omega * 15fF * ln(2) = 26.0ps$

 $t_{C-D} = 1.2k\Omega * 20fF * ln(2) = 16.64ps$

Thus, $t_{A-D} = 55.12 ps$

2. Ring Oscillators

(a) Describe the behavior of each circuit drawn above. Assume node A is initially 0.

Solutions:

Circuit 1: Because there are an EVEN number of inverters, each node would stay at a fixed voltage – not a ring oscillator.

Circuit 2: Because there are an ODD number of inverters, circuit 2 creates a ring oscillator. We need an ODD number of inverters to create a ring oscillator.

(b) Circuit 2 is called a *ring oscillator* or RO. If each inverter in this circuit has $R_{ON,N} = R_{ON,P} = 5k\Omega$ and $C_{gate,N} = C_{gate,P} = 0.5$ fF, at what frequency will node *A* oscillate?

Solutions: Equation: $\tau = R * C * ln(2)$

 $R_{ON,N} = R_{ON,P} = 5k\Omega$ and $C_{gate,N} = C_{gate,P} = 0.5 fF$.

The frequency will oscillate at $f = \frac{1}{2n\tau}$ where τ is the time delay at each node and n is the number of nodes (inverters). $R_{ON,N} = R_{ON,P}$ the resistance at the output each node will be the same. The capacitance at the input of each node will also be the same ($C_{gate,N} + C_{gate,P}$). Thus, $\tau = 5k\Omega * (0.5 + 0.5) fF * ln(2) = 3.47 ps$, so $f = \frac{1}{2*5*3.47 ps} = 28.9 GHz$.

3. Ring Oscillators, Really

In reality, it would be difficult to design transistors with the parameters given above because pMOS devices tend to be 1.5-3x weaker than nMOS devices of the same size. (This is because electrons, the charge carriers for nMOS devices, have a higher *mobility* than holes, the charge carriers for pMOS devices.) Let's investigate options for a more realistic ring oscillator.

(a) First, we'll try leaving the nMOS and pMOS the same size. Using the same nMOS characteristics as Question 2, use R_{ON,P} = 10kΩ and C_{gate,P} = 0.5fF to find the new oscillation frequency of the RO.
Solutions: R_{ON,N} is the same as in 2b, R_{ON,P} = 10kΩ, C_{gate,N} is the same as in 2b, and C_{gate,P} = 0.5*fF*. The frequency will oscillate at f = 1/n*(τ₁+τ₂) where τ₁ is the time delay at a PMOS node, τ₂ is the time delay at a NMOS node, and n is the number of nodes (inverters). The capacitance at the input of each node will be the same (C_{gate,N} + C_{gate,P}).

Thus, $\tau_1 = 10k\Omega * (0.5 + 0.5)fF * ln(2) = 6.93ps$; $\tau_2 = 5k\Omega * (0.5 + 0.5)fF * ln(2) = 3.47ps$, so $f = \frac{1}{5*(6.93ps+3.47ps)} = 19.2GHz$.

(b) Next, we'll increase the size of the pMOS to match the nMOS drive strength. Using the same nMOS characteristics as Question 2, use $R_{ON,P} = 5k\Omega$ and $C_{gate,P} = 1$ fF to find the new oscillation frequency of the RO.

Solutions: $R_{ON,N}$ is the same as in 2b, $R_{ON,P} = 5k\Omega$, $C_{gate,N}$ is the same as in 2b, and $C_{gate,P} = 1fF$. The frequency will oscillate at $f = \frac{1}{n*(\tau_1 + \tau_2)}$ where τ_1 is the time delay at a PMOS node, τ_2 is the time delay at a NMOS node, and n is the number of nodes (inverters). The capacitance at the input of each node will be the same ($C_{gate,N} + C_{gate,P}$).

Thus, $\tau_1 = 5k\Omega * (0.5 + 1)fF * ln(2) = 5.20ps$; $\tau_2 = 5k\Omega * (0.5 + 1)fF * ln(2) = 5.20ps$, so $f = \frac{1}{5*(5.20ps+5.20ps)} = 19.2GHz$.

(c) If we wanted to use the RO design from part (b) to generate a 1GHz clock, approximately how many inverter stages would be required?

Solutions: (c) Since 5 inverters produced a 19.2 GHz clock from part (b), in order to produce a 1 GHz clock, we would need about 5 * 19 inverters = 95 inverters.