EE 16B Fall 2015
 Designing Information Devices and Systems II

1. All-Pass Filter

(a) Place an " x " and an " o " on the complex plane to construct an "all-pass" filter that has the same magnitude at all frequencies. Label the real part of the " o " σ_{0} on the real axis.

(b) On the plot above, draw vectors that show the filter's response when $\omega=0, \omega \rightarrow \infty$, and $\omega=\sigma_{0}$.
(c) Write $|H(\omega)|$ in terms of arrows (as in lecture), and sketch a plot. Label the frequencies from part (b).
(d) Write $\angle H(\omega)$ in terms of arrows (as in lecture), and sketch a plot. Label the frequencies from part (b).
(e) Construct $H(\omega)$ by placing the vector from the " o " in the numerator and the vector from the "x" in the denominator.

2. All-Pass Filter, Continued

(a) Find the frequency response $H(\omega)$ of the circuit, and sketch a Bode plot $\left(20 \log _{10}|H(\omega)|\right.$ and $\angle H(\omega)$ versus ω, plotted on a logarithmic scale).
(b) What is the relationship between σ_{0} of Problem 1 and the values of the components in this circuit?
(c) If $V_{\text {in }}(t)=\sin (2 \pi(1 G H z) t)$, choose values for R, C, and R_{Z} such that $V_{\text {out }}(t)=\cos (2 \pi(1 G H z) t)$. (This could be useful for generating the phase-shifted signals for I/Q downconversion for radios.)

