Bode Plots

Michel M. Maharbiz Vivek Subramanian

Frequency Response

Transfer function of a circuit or system describes the output response to an input excitation as a function of the angular frequency ω .

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_{\text{out}}(\omega)}{\mathbf{V}_{\text{in}}(\omega)}$$

$$\mathbf{H}(\omega) = M(\omega) e^{j\phi(\omega)},$$

where by definition,

$$M(\omega) = |\mathbf{H}(\omega)|, \qquad \phi(\omega) = \tan^{-1}\left\{\frac{\mathfrak{Im}[\mathbf{H}(\omega)]}{\mathfrak{Re}[\mathbf{H}(\omega)]}\right\}$$
Magnitude Phase

dB Scale

If G is defined as the power gain,

$$G = \frac{P}{P_0},$$

then the corresponding gain in dB is defined as

$$G [dB] = 10 \log G = 10 \log \left(\frac{P}{P_0}\right)$$
 (dB).

$$G [dB] = 10 \log \left(\frac{\frac{1}{2} |\mathbf{V}|^2 R}{\frac{1}{2} |\mathbf{V}_0|^2 R} \right) = 20 \log \left(\frac{|\mathbf{V}|}{|\mathbf{V}_0|} \right)$$

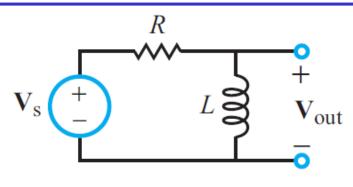
$$G = XY \longrightarrow G [dB] = X [dB] + Y [dB].$$

$$G = \frac{X}{Y} \longrightarrow G [dB] = X [dB] - Y [dB].$$

$\frac{P}{P_0}$	dB
10 ^N	10 <i>N</i> dB
10^{3}	30 dB
100	20 dB
10	10 dB
4	$\simeq 6 \text{ dB}$
2	$\simeq 3 \text{ dB}$
1	0 dB
0.5	$\simeq -3 \text{ dB}$
0.25	$\simeq -6 \text{ dB}$
0.1	-10 dB
10^{-N}	-10N dB

$\left \frac{\mathbf{V}}{\mathbf{V}_0} \right \text{ or } \left \frac{\mathbf{I}}{\mathbf{I}_0} \right $	dB
10^{N}	20 <i>N</i> dB
10^{3}	60 dB
100	40 dB
10	20 dB
4	$\simeq 12 \text{ dB}$
2	$\simeq 6 \mathrm{dB}$
1	0 dB
0.5	$\simeq -6 \mathrm{dB}$
0.25	$\simeq -12 \text{ dB}$
0.1	-20 dB
10^{-N}	-20N dB

Example: RL filter, Magnitude Plot



$$\mathbf{V}_{\text{out}} = \frac{j\omega L \mathbf{V}_{\text{s}}}{R + j\omega L},$$

which leads to

$$\mathbf{H} = \frac{\mathbf{V}_{\text{out}}}{\mathbf{V}_{\text{s}}} = \frac{j\omega L}{R + j\omega L} = \frac{j(\omega/\omega_{\text{c}})}{1 + j(\omega/\omega_{\text{c}})},$$

with $\omega_{\rm c} = R/L$.

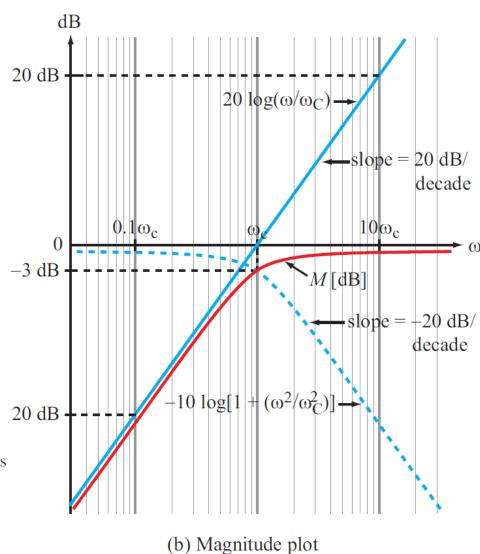
$$M = |\mathbf{H}| = \frac{(\omega/\omega_{\rm c})}{|1 + j(\omega/\omega_{\rm c})|} = \frac{(\omega/\omega_{\rm c})}{\sqrt{1 + (\omega/\omega_{\rm c})^2}}.$$

Since H is a voltage ratio, the appropriate dB scaling factor is 20, so

$$M [dB] = 20 \log M$$

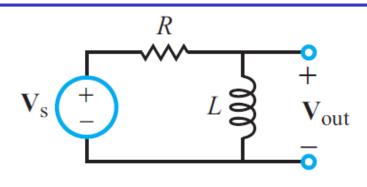
$$= 20 \log(\omega/\omega_{c}) - 20 \log[1 + (\omega/\omega_{c})^{2}]^{1/2}$$

$$= 20 \log(\omega/\omega_{c}) - 10 \log[1 + (\omega/\omega_{c})^{2}]. \quad (9.35)$$



Log scale for ω and dB scale for M

Example: RL filter, Phase Plot



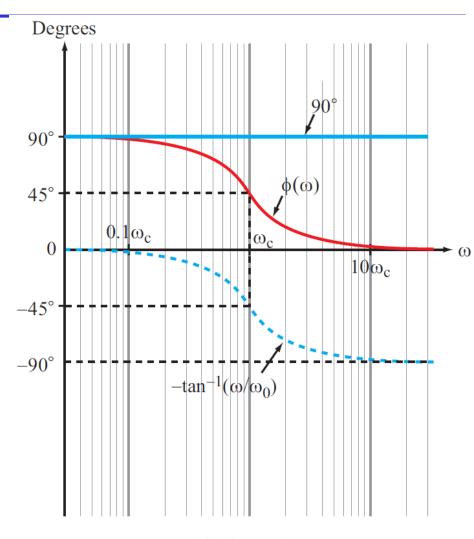
$$\mathbf{V}_{\text{out}} = \frac{j\omega L \mathbf{V}_{\text{s}}}{R + j\omega L},$$

which leads to

$$\mathbf{H} = \frac{\mathbf{V}_{\text{out}}}{\mathbf{V}_{\text{s}}} = \frac{j\omega L}{R + j\omega L} = \frac{j(\omega/\omega_{\text{c}})}{1 + j(\omega/\omega_{\text{c}})}, \quad _{-90}^{\circ}$$

with $\omega_{\rm c} = R/L$.

$$\phi(\omega) = 90^{\circ} - \tan^{-1}\left(\frac{\omega}{\omega_{c}}\right)$$

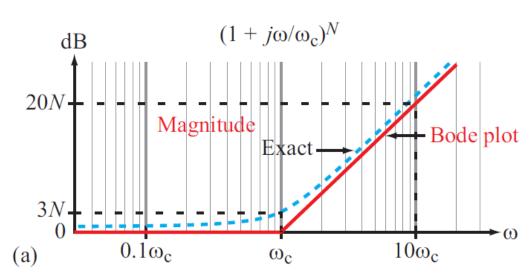


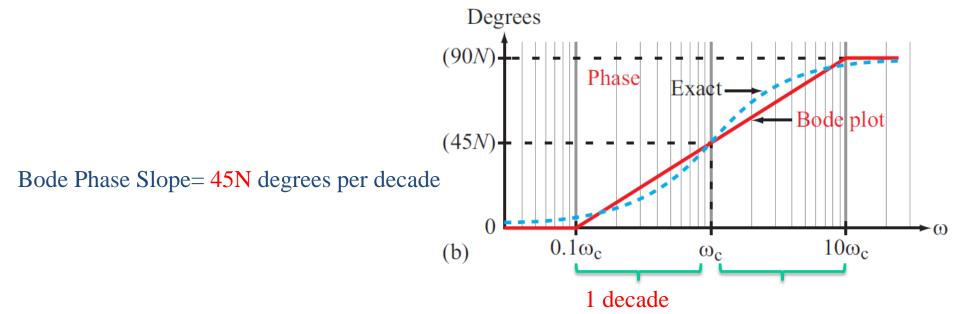
(c) Phase plot

Log scale for ω and linear scale for $\varphi(\omega)$

Bode Plots: Straight line Approximations

Simple zero: $\mathbf{H} = (1 + j\omega/\omega_c)^N$ Bode Magnitude Slope= 20N dB per decade





Bode Plots

