State Feedback Control

Suppose we are given a single-input control system

\[\vec{x}(t+1) = A\vec{x}(t) + Bu(t), \quad u(t) \in \mathbb{R}, \quad (1) \]

and we wish to bring the solution \(\vec{x}(t) \) to the equilibrium \(\vec{x} = 0 \) from any initial condition \(\vec{x}(0) \).

To achieve this goal we will study a “control policy” of the form

\[u(t) = k_1 x_1(t) + k_2 x_2(t) + \cdots + k_n x_n(t) \quad (2) \]

where \(k_1, k_2, \ldots, k_n \) are to be determined. Rewriting (2) as

\[u(t) = K \vec{x}(t) \quad (3) \]

with row vector \(K = [k_1 k_2 \cdots k_n] \), and substituting in (1), we get

\[\vec{x}(t+1) = (A + BK)\vec{x}(t). \quad (4) \]

Thus, if we can choose \(K \) such that all eigenvalues of \(A + BK \) satisfy the stability condition \(|\lambda_i(A + BK)| < 1 \), then \(\vec{x}(t) \to 0 \) from any \(\vec{x}(0) \).

We will see in the next lecture that if the system (1) is controllable, then we can arbitrarily assign the eigenvalues of \(A + BK \) with the choice of \(K \). Thus, in addition to bringing the eigenvalues inside the unit disk for stability, we can place them in favorable locations to shape the transients, e.g., to achieve a well damped convergence.

We refer to (4) as the "closed-loop" system since the control policy (2) generates a feedback loop as depicted in the block diagram. The state variables are measured at every time step \(t \) and the input \(u(t) \) is synthesized as a linear combination of these measurements.
Comparison to Open Loop Control

Recall from the last lecture that controllability allows us to calculate an input sequence $u(0), u(1), u(2), \ldots$ that drives the state from $\vec{x}(0)$ to any \vec{x}_{target}. Thus, an alternative to the feedback control (2) is to select $\vec{x}_{\text{target}} = 0$, calculate an input sequence based on $\vec{x}(0)$, and to apply this sequence in an “open-loop” fashion without using further state measurements as depicted below.

\[
\begin{align*}
u(0), u(1), u(2), \ldots & \quad \rightarrow \\
\vec{x}(t+1) &= A\vec{x}(t) + Bu(t)
\end{align*}
\]

The trouble with this open-loop approach is that it is sensitive to uncertainties in A and B, and does not make provisions against disturbances that may act on the system.

By contrast, feedback offers a degree of robustness: if our design of K brings the eigenvalues of $A + BK$ to well within the unit disk, then small perturbations in A and B would not move these eigenvalues outside the disk. Thus, despite the uncertainty, solutions converge to $\vec{x} = 0$ in the absence of disturbances and remain bounded in the presence of bounded disturbances.

Example (Cruise Control): Consider again a vehicle moving in a lane (Lecture 6A) where the state equation for the velocity $v(t)$ is

\[
v(t+1) = v(t) + Tu(t). \quad (5)
\]

Suppose we want to stabilize the velocity to a desired value v^*. Define $\tilde{v}(t) = v(t) - v^*$, and subtract v^* from both sides of the equation:

\[
\tilde{v}(t+1) = \tilde{v}(t) + Tu(t). \quad (6)
\]

Then the controller

\[
u(t) = k\tilde{v}(t) = k(v(t) - v^*)
\]

results in the closed-loop system

\[
\tilde{v}(t+1) = (1 + kT)\tilde{v}(t)
\]

which is stable if we choose the coefficient k such that $|1 + kT| < 1$.

Eigenvalue Assignment: Second Order Examples

Example: Consider the second order system
\[\ddot{x}(t + 1) = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \dot{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \]
\[A \] \[B \] \[\text{Equation 7} \]

and note that the eigenvalues of \(A \) are the roots of the polynomial\(^1\) obtained from \(\det(\lambda I - A) \)
\[\lambda^2 - a_2 \lambda - a_1. \]

If we substitute the control
\[u(t) = K\ddot{x}(t) = k_1x_1(t) + k_2x_2(t) \]

the closed-loop system becomes
\[\ddot{x}(t + 1) = \begin{bmatrix} 0 & 1 \\ a_1 + k_1 & a_2 + k_2 \end{bmatrix} \ddot{x}(t) \]
\[\begin{array}{c} A \\ +BK \end{array} \] \[\text{Equation 8} \]

and, since \(A + BK \) has the same structure as \(A \) with \(a_1, a_2 \) replaced by \(a_1 + k_1, a_2 + k_2 \), the eigenvalues of \(A + BK \) are the roots of
\[\lambda^2 - (a_2 + k_2) \lambda - (a_1 + k_1). \]

Now if we want to assign the eigenvalues of \(A + BK \) to desired values \(\lambda_1 \) and \(\lambda_2 \), we must match the polynomial above to
\[(\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2) \lambda + \lambda_1 \lambda_2, \]
that is,
\[a_2 + k_2 = \lambda_1 + \lambda_2 \quad \text{and} \quad a_1 + k_1 = -\lambda_1 \lambda_2. \]

This is indeed accomplished with the choice \(k_1 = -a_1 - \lambda_1 \lambda_2 \) and \(k_2 = -a_2 + \lambda_1 + \lambda_2 \), which means that we can assign the closed-loop eigenvalues as we wish.

Example: Let’s apply the eigenvalue assignment procedure above to
\[\ddot{x}(t + 1) = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \ddot{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t). \]
\[A \] \[B \]

Now we have
\[A + BK = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 1 + k_1 & 1 + k_2 \\ 0 & 2 \end{bmatrix} \]
and, because this matrix is upper diagonal, its eigenvalues are the diagonal entries:

\[\lambda_1 = 1 + k_1 \quad \text{and} \quad \lambda_2 = 2. \]

Note that we can move \(\lambda_1 \) with the choice of \(k_1 \), but we have no control over \(\lambda_2 \). In fact, since \(|\lambda_2| > 1\), the closed-loop system remains unstable no matter what control we apply.

This is a consequence of the uncontrollability of this example which was shown in the previous lecture. The second state equation

\[x_2(t + 1) = 2x_2(t) \]

can’t be influenced by \(u(t) \), and \(x_2(t) = 2^t x_2(0) \) grows exponentially.

By contrast the previous example was controllable\(^3\). In the next section we argue that controllability allows us to arbitrarily assign the eigenvalues of \(A + BK \) with the choice of \(K \).

\(^3\) Show this.