1. Complex Algebra

(a) Express the following values in polar forms: $-1, j, -j, \sqrt{j},$ and $\sqrt{-j}$. Recall $j = \sqrt{-1}$.

(b) Represent $\sin \theta$ and $\cos \theta$ using complex exponentials. (*Hint:* Use Euler’s identity $e^{j\theta} = \cos \theta + j\sin \theta$.)

(c) For complex number $z = x + jy$ show that $|z| = \sqrt{\overline{z}z}$, where \overline{z} is the complex conjugate of z.

For the next two parts, consider two complex numbers $A = 1 - j\sqrt{3}$ and $B = \sqrt{3} + j$.

(d) Express A and B in polar form.

(e) Find AB, $A\overline{B}$, $A\overline{B}$, and \sqrt{B}.

2. Differential Equations with Complex Eigenvalues

Suppose we have the pair of differential equations

$$\frac{d}{dt}x_1(t) = \lambda x_1(t) \quad (1)$$
$$\frac{d}{dt}x_2(t) = \overline{\lambda} x_2(t) \quad (2)$$

with initial conditions $x_1(0) = c_0$ and $x_2(0) = \tau_0$, where λ and c_0 are complex numbers and $\overline{\lambda}$ and τ_0 are their complex conjugates, respectively.

Suppose now that we have the following different variables related to the original ones:

$$y_1(t) = ax_1(t) + \overline{a}x_2(t) \quad (3)$$
$$y_2(t) = bx_1(t) + \overline{b}x_2(t) \quad (4)$$

where a and b are complex numbers and \overline{a} and \overline{b} are their complex conjugates. These numbers can be written:

$$a = a_r + ja_i,$$
$$\overline{a} = a_r - ja_i,$$
$$b = b_r + jb_i,$$
$$\overline{b} = b_r - jb_i,$$

where a_r, a_i, b_r, b_i are all real numbers.

(a) First, assume that $\lambda = j = \sqrt{-1}$ in the equations for $x_1(t)$ and $x_2(t)$ above. Solve $x_1(t)$ and $x_2(t)$.

(b) How do the initial conditions for $\overline{x}(t)$ translate into the initial conditions for $\overline{y}(t)$?

(c) Write out a system of differential equations using $\frac{d}{dt}y_1(t)$ and $y_1(t)$.
(d) Suppose we know \(x_1(t) \) and \(x_2(t) \) are complex conjugates of each other. What will this say about \(y_1(t) \) and \(y_2(t) \)?

(e) Find the eigenvalues \(\lambda_1, \lambda_2 \) and associated eigenspaces for the differential equation matrix for \(\vec{y}(t) \) above.

(f) Change coordinates into the eigenbasis to re-express the differential equations in terms of new variables \(z_{\lambda_1}(t), z_{\lambda_2}(t) \). (These variables should be in eigenbasis-aligned coordinates.)

(g) Solve the differential equation for \(z_{\lambda}(t) \) in the eigenbasis.

(h) Convert your solution back into the \(\vec{y}(t) \) coordinates to find \(\vec{y}(t) \).

(i) Repeat the above for general complex \(\lambda \).

3. RLC Responses: Initial Part

Consider the following circuit like you saw in lecture:

![RLC Circuit Diagram]

Assume the circuit above has reached steady state for \(t < 0 \). At time \(t = 0 \), the switch changes state and disconnects the voltage source, replacing it with a short.

(a) Write the system of differential equations in terms of state variables \(x_1(t) = I_L(t) \) and \(x_2(t) = V_C(t) \) that describes this circuit for \(t \geq 0 \). Leave the system symbolic in terms of \(V_s, L, R, \) and \(C \).

(b) Write the system of equations in vector/matrix form with the vector state variable \(\vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \).

This should be in the form \(\frac{d}{dt} \vec{x}(t) = A \vec{x}(t) \) with a \(2 \times 2 \) matrix \(A \).

(c) Find the eigenvalues of the \(A \) matrix symbolically. (Hint: the quadratic formula will be involved.)

(d) Under what condition on the circuit parameters \(R, L, C \) are there going to be a pair of distinct real eigenvalues of \(A \)?

(e) Under what condition on the circuit parameters \(R, L, C \) are there going to be a pair of purely imaginary eigenvalues of \(A \)?

(f) Assuming that the circuit parameters are such that there are a pair of (potentially complex) eigenvalues \(\lambda_1, \lambda_2 \) so that \(\lambda_1 \neq \lambda_2 \), find eigenvectors \(\vec{v}_{\lambda_1}, \vec{v}_{\lambda_2} \) corresponding to them.

(HINT: Rather than trying to find the relevant nullspaces, etc., you might just want to try to find eigenvectors of the form \(\begin{bmatrix} 1 \\ ? \end{bmatrix} \) where we just want to find the missing entry. Can you see from the structure of the \(A \) matrix why we might want to try that guess?)
(g) Assuming circuit parameters such that the two eigenvalues of A are distinct, let $V = [\vec{v}_{\lambda_1}, \vec{v}_{\lambda_2}]$ be a specific eigenbasis. Consider a coordinate system for which we can write $\vec{x}(t) = V\vec{\tilde{x}}(t)$. **What is the \tilde{A} so that $\frac{d}{dt}\vec{\tilde{x}}(t) = \tilde{A}\vec{\tilde{x}}(t)$?** It is fine to have your answer expressed symbolically using λ_1, λ_2.

Contributors:

- Brian Kilberg.
- Kuan-Yun Lee.
- Anant Sahai.
- Regina Eckert.
- Jaijeet Roychowdhury.
- Sanjeet Batra.
- Aditya Arun.
- Alex Devonport.