EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 0B

1. Instructional Accounts Get your instructional accounts from http://inst.eecs.berkeley.edu/webacct

2. Ice-Breaker

Welcome back!

- **3.** Who will win the election? Candidates A, B, C are running for office. Currently, B is leading with 90% and A and C split the rest of the votes. However, the public's opinions change every day: 10% of A's supporters will revert to B; 20% and 10% of B's supporters will switch to favoring A and C, respectively; and 20% of C's supporters will switch to supporting A and another 20% will go for B.
 - (a) How could we model this using the linear-algebraic tools that you have learned?
 - (b) Given that the final election is very far from now, who will win this election assuming supporters keep changing in the described way?
- **4.** Eigenspace Suppose $\lambda_1, \dots, \lambda_m$ are distinct eigenvalues of *T* and $\vec{v_1}, \dots, \vec{v_m}$ are corresponding eigenvectors. Show that $\vec{v_1}, \dots, \vec{v_m}$ are linearly independent.

5. Inner Product, Projection

Suppose that we have a vector \vec{v} that we wish to approximate. We are given a collection of k vectors $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$. We would like to find an approximation \vec{w} to \vec{v} where we require that \vec{w} is a linear combination of the k vectors \vec{u}_i . Assume that you care about minimizing the Euclidean distance between \vec{w} and \vec{v} .

How would you find \vec{w} and why does this work?