EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 12B

1. Lagrange interpolation and polynomial basis

In practice, to approximate some unknown or complex function f(x), we take *n* evaluations/samples of the function, denoted by $\{(x_i, y_i \triangleq f(x_i)); 0 \le i \le n-1\}$. With the Occam's razor principle in mind, we try to fit a polynomial function of least degree (which is n-1) that passes through all the given points.

(a) Using the polynomial basis $\{1, x, x^2, \dots, x^{n-1}\}$ studied in problem 1, the fitting problem can be cast into finding the coefficients a_0, a_1, \dots, a_{n-1} of the function

$$g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

such that $g(x_i) = y_i$, $\forall i = 0, 1, \dots, n-1$. Find out the set of equations that need to be satisfied, and write them in a matrix form $A\vec{a} = \vec{y}$, with $\vec{a} = [a_0, a_1, \dots, a_{n-1}]^T$ and $\vec{y} = [y_0, y_1, \dots, y_{n-1}]^T$

(b) Now we observe that in order to find those coefficients, we need to calculate $\vec{a} = A^{-1}\vec{y}$. The matrix inversion is computationally expensive and numerically inaccurate when *n* is large. The idea of Lagrange interpolation is to use a different set of basis $\{L_0(x), L_1(x), \dots, L_{n-1}(x)\}$, which has the property that

$$L_i(x_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

With that the fitting problem becomes finding the coefficients b_0, b_1, \dots, b_{n-1} of the function

$$h(x) = b_0 L_0(x) + b_1 L_1(x) + b_2 L_2(x) + \dots + b_{n-1} L_{n-1}(x)$$

such that $h(x_i) = y_i$, $\forall i = 0, 1, \dots n-1$. Again, find out the set of equations that need to be satisfied, and write them in a matrix form. What do you observer?

(c) Show that if we define

$$L_{i}(x) = \prod_{j=0; j \neq i}^{j=n-1} \frac{(x-x_{j})}{(x_{i}-x_{j})}$$

then the property required in part (b) is satisfied. What is the intuition behind this construction?

- (d) Based on the previous two parts, write down the explicit form of h(x) with the samples $\{(x_i, y_i); 0 \le i \le n-1\}$. The resulting formula is the so called Lagrange polynomial which passes through the *n* sampled points.
- (e) Find the Lagrange polynomial given evaluated samples f(-1) = 3, f(0) = -4, f(1) = 5, f(2) = -6.

2. Inner products of of polynomials

A polynomial of degree at most *n* on a single variable can be written as

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$$

where we assume that the coefficients p_0, p_1, \ldots, p_n are real. Let P_n be the vector space of all polynomials of degree at most n.

EECS 16B, Spring 2016, Discussion 12B

(a) We can define an inner product on P_2 by setting

$$\langle p,q\rangle = \sum_{i=0}^{2} p(i)q(i) = \begin{pmatrix} p(0) & p(1) & p(2) \end{pmatrix} \begin{pmatrix} q(0) \\ q(1) \\ q(2) \end{pmatrix}$$

This is equivalent to sampling the polynomials p,q at the points 0,1,2 and taking the dot product of the resulting vectors. Show that this satisfies the following properties of a real inner product.

- $\langle p, p \rangle \ge 0$, with equality if and only if p = 0.
- For all $a \in \mathbb{R}$, $\langle ap, q \rangle = a \langle p, q \rangle$.
- $\langle p,q\rangle = \langle q,p\rangle.$
- (b) Show that for P_3 , the formula from the previous part does not define an inner product. (*Hint*: Consider the polynomial p(x) = x(x-1)(x-2).)
- (c) Now consider the inner product on P_3 by sampling at the points 0, 1, 2, 3.

$$\langle p,q \rangle = \sum_{i=0}^{3} p(i)q(i)$$

Does this define an inner product on P_3 ? Do the points where we sample the polynomials matter?

- (d) How can we define an inner product on P_n ?
- (e) Consider the polynomials p = t 1, $q = t^3 2t^2$ in P_3 . Compute their inner product on P_3 . Are they orthogonal?
- (f) Consider the polynomial $r = t^2$. For any nonzero $u \in P_3$, the projection of r onto $u \in P_3$ is

$$\operatorname{proj}_{u} r = \frac{\langle r, u \rangle}{\langle u, u \rangle} u$$

Compute $\operatorname{proj}_p r$. (From (e), p = t - 1)

Contributors:

- Yuxun Zhou.
- Lynn Chua.