EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 12B

1. Lagrange interpolation and polynomial basis

In practice, to approximate some unknown or complex function $f(x)$, we take n evaluations/samples of the function, denoted by $\left\{\left(x_{i}, y_{i} \triangleq f\left(x_{i}\right)\right) ; 0 \leq i \leq n-1\right\}$. With the Occam's razor principle in mind, we try to fit a polynomial function of least degree (which is $n-1$) that passes through all the given points.
(a) Using the polynomial basis $\left\{1, x, x^{2}, \cdots, x^{n-1}\right\}$ studied in problem 1 , the fitting problem can be cast into finding the coefficients $a_{0}, a_{1}, \cdots, a_{n-1}$ of the function

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

such that $g\left(x_{i}\right)=y_{i}, \forall i=0,1, \cdots n-1$. Find out the set of equations that need to be satisfied, and write them in a matrix form $A \vec{a}=\vec{y}$, with $\vec{a}=\left[a_{0}, a_{1}, \cdots, a_{n-1}\right]^{T}$ and $\vec{y}=\left[y_{0}, y_{1}, \cdots, y_{n-1}\right]^{T}$
(b) Now we observe that in order to find those coefficients, we need to calculate $\vec{a}=A^{-1} \vec{y}$. The matrix inversion is computationally expensive and numerically inaccurate when n is large. The idea of Lagrange interpolation is to use a different set of basis $\left\{L_{0}(x), L_{1}(x), \cdots, L_{n-1}(x)\right\}$, which has the property that

$$
L_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

With that the fitting problem becomes finding the coefficients $b_{0}, b_{1}, \cdots, b_{n-1}$ of the function

$$
h(x)=b_{0} L_{0}(x)+b_{1} L_{1}(x)+b_{2} L_{2}(x)+\cdots+b_{n-1} L_{n-1}(x)
$$

such that $h\left(x_{i}\right)=y_{i}, \forall i=0,1, \cdots n-1$. Again, find out the set of equations that need to be satisfied, and write them in a matrix form. What do you observer?
(c) Show that if we define

$$
L_{i}(x)=\Pi_{j=0 ; j \neq i}^{j=n-1} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}
$$

then the property required in part (b) is satisfied. What is the intuition behind this construction?
(d) Based on the previous two parts, write down the explicit form of $h(x)$ with the samples $\left\{\left(x_{i}, y_{i}\right) ; 0 \leq\right.$ $i \leq n-1\}$. The resulting formula is the so called Lagrange polynomial which passes through the n sampled points.
(e) Find the Lagrange polynomial given evaluated samples $f(-1)=3, f(0)=-4, f(1)=5, f(2)=-6$.

2. Inner products of of polynomials

A polynomial of degree at most n on a single variable can be written as

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots p_{n} x^{n}
$$

where we assume that the coefficients $p_{0}, p_{1}, \ldots, p_{n}$ are real. Let P_{n} be the vector space of all polynomials of degree at most n.
(a) We can define an inner product on P_{2} by setting

$$
\langle p, q\rangle=\sum_{i=0}^{2} p(i) q(i)=\left(\begin{array}{lll}
p(0) & p(1) & p(2)
\end{array}\right)\left(\begin{array}{l}
q(0) \\
q(1) \\
q(2)
\end{array}\right)
$$

This is equivalent to sampling the polynomials p, q at the points $0,1,2$ and taking the dot product of the resulting vectors. Show that this satisfies the following properties of a real inner product.

- $\langle p, p\rangle \geq 0$, with equality if and only if $p=0$.
- For all $a \in \mathbb{R},\langle a p, q\rangle=a\langle p, q\rangle$.
- $\langle p, q\rangle=\langle q, p\rangle$.
(b) Show that for P_{3}, the formula from the previous part does not define an inner product. (Hint: Consider the polynomial $p(x)=x(x-1)(x-2)$.)
(c) Now consider the inner product on P_{3} by sampling at the points $0,1,2,3$.

$$
\langle p, q\rangle=\sum_{i=0}^{3} p(i) q(i) .
$$

Does this define an inner product on P_{3} ? Do the points where we sample the polynomials matter?
(d) How can we define an inner product on P_{n} ?
(e) Consider the polynomials $p=t-1, q=t^{3}-2 t^{2}$ in P_{3}. Compute their inner product on P_{3}. Are they orthogonal?
(f) Consider the polynomial $r=t^{2}$. For any nonzero $u \in P_{3}$, the projection of r onto $u \in P_{3}$ is

$$
\operatorname{proj}_{u} r=\frac{\langle r, u\rangle}{\langle u, u\rangle} u .
$$

Compute $\operatorname{proj}_{p} r$. (From (e), $p=t-1$)

Contributors:

- Yuxun Zhou.
- Lynn Chua.

