EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 13A

1. Revisiting the DFT basis

In lecture, we show that the Discrete Fourier Fransform (DFT) represents a projection of a length n signal \vec{x} onto the set of n sampled complex sinusoids generated by the n-th roots of unity. Here we want to discuss interpolation over DFT basis.
Recap of DFT: We can think of a real-world signal that is a function of time $x(t)$. By recording its values at regular intervals, we can represent it as a vector of discrete samples \vec{x}, of length n.

$$
\vec{x}=\left[\begin{array}{c}
x[0] \tag{1}\\
x[1] \\
\vdots \\
x[n-1]
\end{array}\right]
$$

Let $\vec{X}=\left[\begin{array}{lll}X[0] & \ldots & X[n-1]\end{array}\right]^{T}$ be the signal \vec{x} represented in the frequency domain, that is

$$
\begin{equation*}
\vec{X}=U^{-1} \vec{x}=U^{*} \vec{x} \tag{2}
\end{equation*}
$$

where U is a matrix of the DFT basis vectors $\left(\omega=e^{i \frac{2 \pi}{n}}\right)$.

$$
U=\left[\begin{array}{ccc}
\mid & & \mid \tag{3}\\
\vec{u}_{0} & \cdots & \vec{u}_{n-1} \\
\mid & & \mid
\end{array}\right]=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]
$$

Alternatively, we have that $\vec{x}=U \vec{X}$ or more explicitly

$$
\begin{equation*}
\vec{x}=X[0] \vec{u}_{0}+\cdots+X[n-1] \vec{u}_{n-1} \tag{4}
\end{equation*}
$$

In other words, \vec{x} is a linear combination of the complex exponentials \vec{u}_{i} with coefficients $X[i]$.
(a) For $x(t)=e^{i \frac{2 \pi}{3}}$, sketch the real and complex parts versus t.
(b) Sample $x(t)$ at $t=0,1,2$. How are those sampling points related to our DFT basis for $n=3$?
(c) Show that for any n and $k, \vec{u}_{-k}=\vec{u}_{n-k}$
(d) According to (c), the DFT matrix can be represented as

$$
U=\left[\begin{array}{cccccc}
\mid & \mid & \mid & & \mid & \mid \\
\vec{u}_{0} & \vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{-2} & \vec{u}_{-1} \\
\mid & \mid & \mid & & \mid & \mid
\end{array}\right]
$$

(e) Compute the DFT coefficients \vec{X} for the following signal:

$$
\vec{x}=\left[\sin \left(\frac{2 \pi}{3}(0)\right) \quad \sin \left(\frac{2 \pi}{3}(1)\right) \quad \sin \left(\frac{2 \pi}{3}(2)\right) \quad \sin \left(\frac{2 \pi}{3}(3)\right) \quad \sin \left(\frac{2 \pi}{3}(4)\right) \quad \sin \left(\frac{2 \pi}{3}(5)\right)\right]^{T}
$$

(f) Now consider a real discrete-time signal:

$$
\vec{x}=\left[\begin{array}{c}
1 \\
x[1] \\
x[2] \\
1 \\
1-\frac{\sqrt{3}}{2} \\
x[5]
\end{array}\right]^{T}
$$

We know $X[m]=0$ for $m= \pm 2$. Show that we could recover the whole signal \vec{x} based on the information above. What is \vec{X} ?
(g) What if we don't know $x[4]$ is $1-\frac{\sqrt{3}}{2}$? Is \vec{x} unique?
(h) Given a continues time sinusoidal signal $x(t)=\sin \left(\frac{2 \pi}{3} t\right)$, what is its frequency? What is the sampling rate for creating the discrete signal \vec{x} in (e)?
(i) Sample $x(t)=\sin \left(\frac{2 \pi}{3} t\right)$ with the sample rate $=2 \mathrm{~Hz}$ between $0 \leq t<3$. How many data points do you get? Collect those sample points as a discrete signal \vec{y}. Compare the DFT coefficients of \vec{y} with the result in (e). Explain their relationship.
(j) Sample $x(t)=\sin \left(\frac{2 \pi}{3} t\right)$ with the sample rate $=2 \mathrm{~Hz}$ between $0 \leq t<6$. How many data points do you get? Collect those sample points as a discrete signal \vec{z}. Compare the DFT coefficients of \vec{z} with the result in (e). Explain their relationship.
(k) Consider a length n discrete-time signal \vec{x}, along with its DFT coefficients, \vec{X}. If we know $X[m]=0$, for all $|m|>k$, what is the minimum number of sampling points we need to interpolating the \vec{x} ?
(l) Sample $x(t)=\sin \left(\frac{2 \pi}{3} t\right)$ with the sample rate $=2 / 3 \mathrm{~Hz}$ between $0 \leq t<3$. Are you able to reconstruct the signal based on the sample points?

