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1. Properties of SVD components.

Now that you have seen SVD in lecture, this warm-up problem is intended to help you recall some linear
algebra properties in order to understand why SVD has its particular form.

Let X be a real matrix of size m×n (assuming in the beginning m ≥ n), and let X =UΣV T be the SVD of
X , where U is an m×m orthonormal matrix, V is an n× n orthornormal matrix, and Σ is an m× n block
diagonal matrix whose diagonal entries σ0, . . . ,σn−1 are the singular values of X .

(a) We know that the singular values are equal to the square roots of the eigenvalues of XT X , or XXT , i.e.,
σi =

√
λi. In lecture, it was shown that the eigenvalues of XT X , or XXT are real.

Using a similar technique, show that (1) the eigenvalues of XT X , denoted by λ0, · · · ,λn−1, are non-
negative, and that (2) XT X and XXT have the same set of non-zeros eigenvalues.

(b) We also know that the columns of U are the eigenvectors of XXT , the columns of V are the eigenvectors
of XT X , and that they are orthonormal matrices. Recall (or prove) that an orthonormal transformation
preserves inner product (hence norm as well). Consider a matrix as a linear operator that does “rota-
tions”, “reflection”, and scaling. Which operations can U and V perform? How about Σ?

(c) What would you do if n≥ m? What if anything changes in your argument?

(d) Now, what can you say about SVD?

2. Diagonalization of symmetric matrices by orthonormal eigenvectors.

You may be wondering why U and V have their specific forms. In this problem, we will show more generally
that every real symmetric matrix can be diagonalized by a matrix of its orthonormal eigenvectors. In other
words, a symmetric matrix has a full complement of eigenvectors that are all orthogonal to each other.

Note that in homework 3, you will be asked to derive this in a more formal way using induction. Here we
will just provide some key steps for a recursive derivation. (That can be turned into an inductive proof.)

In order for you to better understand the involved steps, you can consider a concrete case
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and figure out the general case by abstracting variables.

(a) Consider a non-zero vector~u0 ∈Rn. Can you think of a way to extend it to a set of basis of Rn? In other
words, find~u1, · · · ,~un−1, such that span(~u0,~u1, · · · ,~un−1) = Rn. To begin with, consider [1,−1,0]T .

(b) Can you get an orthonormal basis from what you just constructed?

(c) Now consider a real eigenvalue λ0, and the corresponding eigenvector ~g0 ∈ Rn of a symmetric matrix
S ∈ Rn×n. From the previous part, we can extend~g0 to an orthonormal basis of Rn, denoted by

V = [~v0,~v1, · · · ,~vn−1]
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where ~v0 =
~g0
‖~g0‖ . Compute V T SV by writing V = [~v0,R], where R , [~v1, · · · ,~vn−1]. If you prefer, you

can do this and the next question with the concrete S[3×3] first.

(d) Define Q = RT SR. Look at the first column and the first row of V T SV and show that

S =V
[

λ0 ~0T

~0 Q

]
V T

What can you say about Q?

(e) You have observed that Q is an (n− 1)× (n− 1) symmetric matrix. Now, we will perform the same
steps (c) and (d) on Q to get:

Q = [~u0,Y ]
[

λ1 ~0T

~0 P

]
[~u0,Y ]T

where we have taken~u0 ∈ Rn−1, a eigenvector Q, associated with eigenvalue λ1. Again~u0 is extended
into an orthonormal basis [~u0,~u1, · · · ,~un−2] of Rn−1. We denote Y , [~u1, · · · ,~un−2].
Plug this into S to show that:

S = [~v0,R~u0,RY ]

λ0 0 ~0T

0 λ1 ~0T

~0 ~0 P

 [~v0,R~u0,RY ]T

Again, using the concrete case may help you first.

(f) Show that the matrix [~v0,R~u0,RY ] is still orthonormal. Moreover, show that R~u0 is an eigenvector of S
corresponding to eigenvalue λ1.

(g) Perform the above process recursively - what will you get in the end? Comment on how you obtained
orthonormal diagonization of S.
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