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. Properties of SVD components.

Now that you have seen SVD in lecture, this warm-up problem is intended to help you recall some linear
algebra properties in order to understand why SVD has its particular form.

Let X be a real matrix of size m x n (assuming in the beginning m > n), and let X = ULV be the SVD of
X, where U is an m X m orthonormal matrix, V is an n X n orthornormal matrix, and X is an m X n block
diagonal matrix whose diagonal entries 0y, ..., 0,_ are the singular values of X.

(a) We know that the singular values are equal to the square roots of the eigenvalues of X7 X, or XX7, i.e.,
o; = V/A;. In lecture, it was shown that the eigenvalues of X7 X, or XX are real.

Using a similar technique, show that (1) the eigenvalues of X7 X, denoted by Ag,---,4,_1, are non-
negative, and that (2) X7 X and XX have the same set of non-zeros eigenvalues.

(b) We also know that the columns of U are the eigenvectors of XX, the columns of V are the eigenvectors
of X”X, and that they are orthonormal matrices. Recall (or prove) that an orthonormal transformation
preserves inner product (hence norm as well). Consider a matrix as a linear operator that does “rota-
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tions”, “reflection”, and scaling. Which operations can U and V perform? How about X?
(c) What would you do if n > m? What if anything changes in your argument?

(d) Now, what can you say about SVD?

. Diagonalization of symmetric matrices by orthonormal eigenvectors.

You may be wondering why U and V have their specific forms. In this problem, we will show more generally
that every real symmetric matrix can be diagonalized by a matrix of its orthonormal eigenvectors. In other
words, a symmetric matrix has a full complement of eigenvectors that are all orthogonal to each other.

Note that in homework 3, you will be asked to derive this in a more formal way using induction. Here we
will just provide some key steps for a recursive derivation. (That can be turned into an inductive proof.)

In order for you to better understand the involved steps, you can consider a concrete case
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and figure out the general case by abstracting variables.

(a) Consider a non-zero vector iip € R". Can you think of a way to extend it to a set of basis of R"? In other
words, find @y, - -+ , i, 1, such that span(iiy, if1, - - - , ik, ) = R". To begin with, consider [1,—1,0].

(b) Can you get an orthonormal basis from what you just constructed?

(c) Now consider a real eigenvalue Ay, and the corresponding eigenvector gy € R” of a symmetric matrix
S € R™". From the previous part, we can extend gp to an orthonormal basis of R”, denoted by

V= [‘_;0)‘_;17”' "_}nfl]
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where vy = %. Compute VTSV by writing V = [V, R], where R £ [V/1,---,¥,_1]. If you prefer, you
can do this and the next question with the concrete 3,3 first.

(d) Define Q = RTSR. Look at the first column and the first row of V7 SV and show that
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What can you say about Q?

(e) You have observed that Q is an (n— 1) x (n — 1) symmetric matrix. Now, we will perform the same
steps (c) and (d) on Q to get: .
0 = [ii,Y] [’1‘ OT] o, Y]
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where we have taken iip € R""!, a eigenvector Q, associated with eigenvalue A;. Again i is extended
into an orthonormal basis [iy, ii],- - - , i, 2] of R"~!. We denote Y = [iiy,-- - ,iiy_2].

Plug this into S to show that:

A 0 07
S = [Vo,Riio,RY] | 0 A, 07| [Vo,Riio,RY]T
0 0 P

Again, using the concrete case may help you first.

(f) Show that the matrix [V, Riig, RY] is still orthonormal. Moreover, show that Riiy is an eigenvector of S
corresponding to eigenvalue A;.

(g) Perform the above process recursively - what will you get in the end? Comment on how you obtained
orthonormal diagonization of S.
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