EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 3A

1. Properties of SVD components.

Now that you have seen SVD in lecture, this warm-up problem is intended to help you recall some linear algebra properties in order to understand why SVD has its particular form.

Let X be a real matrix of size $m \times n$ (assuming in the beginning $m \geq n$), and let $X=U \Sigma V^{T}$ be the SVD of X, where U is an $m \times m$ orthonormal matrix, V is an $n \times n$ orthornormal matrix, and Σ is an $m \times n$ block diagonal matrix whose diagonal entries $\sigma_{0}, \ldots, \sigma_{n-1}$ are the singular values of X.
(a) We know that the singular values are equal to the square roots of the eigenvalues of $X^{T} X$, or $X X^{T}$, i.e., $\sigma_{i}=\sqrt{\lambda_{i}}$. In lecture, it was shown that the eigenvalues of $X^{T} X$, or $X X^{T}$ are real.
Using a similar technique, show that (1) the eigenvalues of $X^{T} X$, denoted by $\lambda_{0}, \cdots, \lambda_{n-1}$, are nonnegative, and that (2) $X^{T} X$ and $X X^{T}$ have the same set of non-zeros eigenvalues.
(b) We also know that the columns of U are the eigenvectors of $X X^{T}$, the columns of V are the eigenvectors of $X^{T} X$, and that they are orthonormal matrices. Recall (or prove) that an orthonormal transformation preserves inner product (hence norm as well). Consider a matrix as a linear operator that does "rotations", "reflection", and scaling. Which operations can U and V perform? How about Σ ?
(c) What would you do if $n \geq m$? What if anything changes in your argument?
(d) Now, what can you say about SVD?

2. Diagonalization of symmetric matrices by orthonormal eigenvectors.

You may be wondering why U and V have their specific forms. In this problem, we will show more generally that every real symmetric matrix can be diagonalized by a matrix of its orthonormal eigenvectors. In other words, a symmetric matrix has a full complement of eigenvectors that are all orthogonal to each other.
Note that in homework 3, you will be asked to derive this in a more formal way using induction. Here we will just provide some key steps for a recursive derivation. (That can be turned into an inductive proof.)
In order for you to better understand the involved steps, you can consider a concrete case

$$
S_{[3 \times 3]}=\left[\begin{array}{ccc}
\frac{5}{12} & \frac{5}{12} & \frac{1}{6} \\
\frac{5}{12} & \frac{5}{12} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3}
\end{array}\right]
$$

and figure out the general case by abstracting variables.
(a) Consider a non-zero vector $\vec{u}_{0} \in \mathbb{R}^{n}$. Can you think of a way to extend it to a set of basis of \mathbb{R}^{n} ? In other words, find $\vec{u}_{1}, \cdots, \vec{u}_{n-1}$, such that $\operatorname{span}\left(\vec{u}_{0}, \vec{u}_{1}, \cdots, \vec{u}_{n-1}\right)=\mathbb{R}^{n}$. To begin with, consider $[1,-1,0]^{T}$.
(b) Can you get an orthonormal basis from what you just constructed?
(c) Now consider a real eigenvalue λ_{0}, and the corresponding eigenvector $\vec{g}_{0} \in \mathbb{R}^{n}$ of a symmetric matrix $S \in \mathbb{R}^{n \times n}$. From the previous part, we can extend \vec{g}_{0} to an orthonormal basis of \mathbb{R}^{n}, denoted by

$$
V=\left[\vec{v}_{0}, \vec{v}_{1}, \cdots, \vec{v}_{n-1}\right]
$$

where $\vec{v}_{0}=\frac{\vec{g}_{0}}{\left\|\vec{g}_{0}\right\|}$. Compute $V^{T} S V$ by writing $V=\left[\vec{v}_{0}, R\right]$, where $R \triangleq\left[\vec{v}_{1}, \cdots, \vec{v}_{n-1}\right]$. If you prefer, you can do this and the next question with the concrete $S_{[3 \times 3]}$ first.
(d) Define $Q=R^{T} S R$. Look at the first column and the first row of $V^{T} S V$ and show that

$$
S=V\left[\begin{array}{cc}
\lambda_{0} & \overrightarrow{0}^{T} \\
\overrightarrow{0} & Q
\end{array}\right] V^{T}
$$

What can you say about Q ?
(e) You have observed that Q is an $(n-1) \times(n-1)$ symmetric matrix. Now, we will perform the same steps (c) and (d) on Q to get:

$$
Q=\left[\vec{u}_{0}, Y\right]\left[\begin{array}{cc}
\lambda_{1} & \overrightarrow{0}^{T} \\
\overrightarrow{0} & P
\end{array}\right]\left[\vec{u}_{0}, Y\right]^{T}
$$

where we have taken $\vec{u}_{0} \in \mathbb{R}^{n-1}$, a eigenvector Q, associated with eigenvalue λ_{1}. Again \vec{u}_{0} is extended into an orthonormal basis $\left[\vec{u}_{0}, \vec{u}_{1}, \cdots, \vec{u}_{n-2}\right]$ of \mathbb{R}^{n-1}. We denote $Y \triangleq\left[\vec{u}_{1}, \cdots, \vec{u}_{n-2}\right]$.
Plug this into S to show that:

$$
S=\left[\vec{v}_{0}, R \vec{u}_{0}, R Y\right]\left[\begin{array}{ccc}
\lambda_{0} & 0 & \overrightarrow{0}^{T} \\
0 & \lambda_{1} & \overrightarrow{0}^{T} \\
\overrightarrow{0} & \overrightarrow{0} & P
\end{array}\right]\left[\vec{v}_{0}, R \vec{u}_{0}, R Y\right]^{T}
$$

Again, using the concrete case may help you first.
(f) Show that the matrix $\left[\vec{v}_{0}, R \vec{u}_{0}, R Y\right]$ is still orthonormal. Moreover, show that $R \vec{u}_{0}$ is an eigenvector of S corresponding to eigenvalue λ_{1}.
(g) Perform the above process recursively - what will you get in the end? Comment on how you obtained orthonormal diagonization of S.

Contributors:

- Yuxun Zhou.
- Edward Wang.

