EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 5B

1. DFT

(a) Compute the DFT coefficients of $x_{1}[t]=\cos \left(\frac{2 \pi}{6} t\right)$ where $t \in\{0,1, \ldots, 5\}$.
(b) Plot the magnitude and phase for both time-domain and DFT-basis representations of \vec{x}_{1}.
(c) Compute the DFT coefficients of $x_{2}[t]=\cos \left(\frac{4 \pi}{6} t\right)$ where $t \in\{0,1, \ldots, 5\}$.
(d) Plot the magnitude and phase for both time-domain and DFT-basis representations of \vec{x}_{2}.
(e) How about the general case, $x_{k}[t]=\cos \left(\frac{2 \pi}{6} k t\right)$, where $t \in\{0,1, \ldots, 5\}$?
(f) Compute the DFT coefficients of $\vec{s}=\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right]^{T}$.
(g) Compute the DFT coefficients of $y_{1}[t]=\cos \left(\frac{2 \pi}{6} t-\pi\right)$ where $t \in\{0,1, \ldots, 5\}$.
(h) Consider an impulse response

$$
\vec{h}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]^{T} .
$$

Let $\overrightarrow{x_{1}}$ be the input to the LTI system characterized by \vec{h}. The output \vec{z} is connected to $\overrightarrow{x_{1}}$ by $\vec{z}=C_{\vec{h}} \overrightarrow{x_{1}}$, where $C_{\vec{h}}$ is the circulant matrix that has \vec{h} as its first column. What is \vec{z} ? What is the relationship between $\vec{z}, \overrightarrow{x_{1}}$, and $\overrightarrow{y_{1}}$?

2. SVD

Compute the SVD of the following matrix.

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

Contributors:

- Yen-Sheng Ho.
- Harrison Wang.

