EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 5B

1. DFT

- (a) Compute the DFT coefficients of $x_1[t] = \cos(\frac{2\pi}{6}t)$ where $t \in \{0, 1, \dots, 5\}$.
- (b) Plot the magnitude and phase for both time-domain and DFT-basis representations of \vec{x}_1 .
- (c) Compute the DFT coefficients of $x_2[t] = \cos(\frac{4\pi}{6}t)$ where $t \in \{0, 1, \dots, 5\}$.
- (d) Plot the magnitude and phase for both time-domain and DFT-basis representations of \vec{x}_2 .
- (e) How about the general case, $x_k[t] = \cos(\frac{2\pi}{6}kt)$, where $t \in \{0, 1, \dots, 5\}$?
- (f) Compute the DFT coefficients of $\vec{s} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$.
- (g) Compute the DFT coefficients of $y_1[t] = \cos(\frac{2\pi}{6}t \pi)$ where $t \in \{0, 1, \dots, 5\}$.
- (h) Consider an impulse response

$$\vec{h} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$$

Let $\vec{x_1}$ be the input to the LTI system characterized by \vec{h} . The output \vec{z} is connected to $\vec{x_1}$ by $\vec{z} = C_{\vec{h}}\vec{x_1}$, where $C_{\vec{h}}$ is the circulant matrix that has \vec{h} as its first column. What is \vec{z} ? What is the relationship between \vec{z} , $\vec{x_1}$, and $\vec{y_1}$?

2. SVD

Compute the SVD of the following matrix.

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

Contributors:

- Yen-Sheng Ho.
- Harrison Wang.