Interpolation Continued

Consider an arbitrary signal. I originally take 8 samples (\vec{x}), and the sampling time is $T_s = 1\text{s}$. If I want 16 samples (\vec{y}) over the same duration, then $T_s = 0.5\text{s}$.

Recall: the j^{th} DFT basis element corresponds to a physical frequency of $\frac{j}{nT_s}$.

Recipe for Interpolation:

(1) Take samples to get \vec{x}.

(2) Compute DFT: $\vec{X} = U_n^* \vec{x}$.

(3) Add in zeros to get \vec{X}_{new} that has length b_n (“zero padding”).

(4) Multiply by \sqrt{b} where b is the factor of increase in resolution.

(5) Compute inverse DFT: $\vec{x}_{\text{new}} = U_{b_n} \vec{X}_{\text{new}}^\dagger$.

\textit{Date: April 22, 2016.}