EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 10B

Notes

Polynomial Interpolation

Given n + 1 distinct points, we can find a unique degree n polynomial that passes through these points. Let the polynomial p be,

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n$$

Let the n+1 points be,

$$p(x_0) = y_0, p(x_1) = y_1, \cdots, p(x_n) = y_n$$

Where,

 $x_0 \neq x_1 \neq \cdots \neq x_n$

We can construct a matrix as follows to recover the polynomial *p*.

1	x_0	x_0^2 x^2		$\begin{bmatrix} x_0^n \\ r^n \end{bmatrix}$	$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$		$\begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$
:	л ₁ :	л ₁ :	:	$\begin{bmatrix} x_1 \\ \vdots \end{bmatrix}$		=	91 :
1	x_n	x_n^2		x_n^n	α_n		y _n

Zero-Order Hold

The zero-order hold is another method of interpolation where instead of using a polynomial to fit the data, we just extrapolate the value of y(t), where t is a sample time, and hold it until t + T where T is the time between sample points. Then y(t + T) is the next sample of y and is held until t + 2T. This is continued for all sample points. This eventually creates a piecewise function that looks somewhat like a staircase.

Questions

1. Lagrange interpolation and polynomial basis

In practice, to approximate some unknown or complex function f(x), we take *n* evaluations/samples of the function, denoted by $\{(x_i, y_i \triangleq f(x_i)); 0 \le i \le n-1\}$. With the Occam's razor principle in mind, we try to fit a polynomial function of least degree (which is n-1) that passes through all the given points.

(a) Using the polynomial basis $\{1, x, x^2, \dots, x^{n-1}\}$, the fitting problem can be cast into finding the coefficients a_0, a_1, \dots, a_{n-1} of the function

$$g(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$$

such that $g(x_i) = y_i$, $\forall i = 0, 1, \dots, n-1$. Find out the set of equations that need to be satisfied, and write them in a matrix form $A\vec{a} = \vec{y}$, with $\vec{a} = [a_0, a_1, \dots, a_{n-1}]^T$ and $\vec{y} = [y_0, y_1, \dots, y_{n-1}]^T$

(b) Now we observe that in order to find those coefficients, we need to calculate $\vec{a} = A^{-1}\vec{y}$. The matrix inversion is computationally expensive and numerically inaccurate when *n* is large. The idea of Lagrange interpolation is to use a different set of basis $\{L_0(x), L_1(x), \dots, L_{n-1}(x)\}$, which has the property that

$$L_i(x_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

With that the fitting problem becomes finding the coefficients b_0, b_1, \dots, b_{n-1} of the function

$$h(x) = b_0 L_0(x) + b_1 L_1(x) + b_2 L_2(x) + \dots + b_{n-1} L_{n-1}(x)$$

such that $h(x_i) = y_i$, $\forall i = 0, 1, \dots n-1$. Again, find out the set of equations that need to be satisfied, and write them in a matrix form. What do you observe?

(c) Show that if we define

$$L_{i}(x) = \prod_{j=0; j \neq i}^{j=n-1} \frac{(x - x_{j})}{(x_{i} - x_{j})}$$

then the property required in part (b) is satisfied. What is the intuition behind this construction?

- (d) Based on the previous two parts, write down the explicit form of *h*(*x*) with the samples {(*x_i*, *y_i*); 0 ≤ *i* ≤ *n*−1}. The resulting formula is the so called Lagrange polynomial which passes through the *n* sampled points.
- (e) Find the Lagrange polynomial given evaluated samples f(-1) = 3, f(0) = -4, f(1) = 5, f(2) = -6.

2. Zero-Order Hold

Consider the following voltage samples:

Time (t)	Voltage (V)
0	0
0.25	0.48
0.5	0.84
0.75	1
1	0.9
1.25	0.6
1.5	0.14
1.75	-0.35
2	-0.75
2.25	-0.97
2.5	-0.95
2.75	-0.7

- (a) Draw the zero-order hold interpolation of the samples
- (b) What type of function is this?

Contributors:

- Siddharth Iyer.
- Yuxun Zhou.