EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 10B

Notes

Polynomial Interpolation

Given $n+1$ distinct points, we can find a unique degree n polynomial that passes through these points. Let the polynomial p be,

$$
p(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{n} x^{n}
$$

Let the $n+1$ points be,

$$
p\left(x_{0}\right)=y_{0}, p\left(x_{1}\right)=y_{1}, \cdots, p\left(x_{n}\right)=y_{n}
$$

Where,

$$
x_{0} \neq x_{1} \neq \cdots \neq x_{n}
$$

We can construct a matrix as follows to recover the polynomial p.

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Zero-Order Hold

The zero-order hold is another method of interpolation where instead of using a polynomial to fit the data, we just extrapolate the value of $y(t)$, where t is a sample time, and hold it until $t+T$ where T is the time between sample points. Then $y(t+T)$ is the next sample of y and is held until $t+2 T$. This is continued for all sample points. This eventually creates a piecewise function that looks somewhat like a staircase.

Questions

1. Lagrange interpolation and polynomial basis

In practice, to approximate some unknown or complex function $f(x)$, we take n evaluations/samples of the function, denoted by $\left\{\left(x_{i}, y_{i} \triangleq f\left(x_{i}\right)\right) ; 0 \leq i \leq n-1\right\}$. With the Occam's razor principle in mind, we try to fit a polynomial function of least degree (which is $n-1$) that passes through all the given points.
(a) Using the polynomial basis $\left\{1, x, x^{2}, \cdots, x^{n-1}\right\}$, the fitting problem can be cast into finding the coefficients $a_{0}, a_{1}, \cdots, a_{n-1}$ of the function

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

such that $g\left(x_{i}\right)=y_{i}, \forall i=0,1, \cdots n-1$. Find out the set of equations that need to be satisfied, and write them in a matrix form $A \vec{a}=\vec{y}$, with $\vec{a}=\left[a_{0}, a_{1}, \cdots, a_{n-1}\right]^{T}$ and $\vec{y}=\left[y_{0}, y_{1}, \cdots, y_{n-1}\right]^{T}$
(b) Now we observe that in order to find those coefficients, we need to calculate $\vec{a}=A^{-1} \vec{y}$. The matrix inversion is computationally expensive and numerically inaccurate when n is large. The idea of Lagrange interpolation is to use a different set of basis $\left\{L_{0}(x), L_{1}(x), \cdots, L_{n-1}(x)\right\}$, which has the property that

$$
L_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

With that the fitting problem becomes finding the coefficients $b_{0}, b_{1}, \cdots, b_{n-1}$ of the function

$$
h(x)=b_{0} L_{0}(x)+b_{1} L_{1}(x)+b_{2} L_{2}(x)+\cdots+b_{n-1} L_{n-1}(x)
$$

such that $h\left(x_{i}\right)=y_{i}, \forall i=0,1, \cdots n-1$. Again, find out the set of equations that need to be satisfied, and write them in a matrix form. What do you observe?
(c) Show that if we define

$$
L_{i}(x)=\Pi_{j=0 ; j \neq i}^{j=n-1} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}
$$

then the property required in part (b) is satisfied. What is the intuition behind this construction?
(d) Based on the previous two parts, write down the explicit form of $h(x)$ with the samples $\left\{\left(x_{i}, y_{i}\right) ; 0 \leq\right.$ $i \leq n-1\}$. The resulting formula is the so called Lagrange polynomial which passes through the n sampled points.
(e) Find the Lagrange polynomial given evaluated samples $f(-1)=3, f(0)=-4, f(1)=5, f(2)=-6$.

2. Zero-Order Hold

Consider the following voltage samples:

Time (t)	Voltage (V)
0	0
0.25	0.48
0.5	0.84
0.75	1
1	0.9
1.25	0.6
1.5	0.14
1.75	-0.35
2	-0.75
2.25	-0.97
2.5	-0.95
2.75	-0.7

(a) Draw the zero-order hold interpolation of the samples
(b) What type of function is this?

Contributors:

- Siddharth Iyer.
- Yuxun Zhou.

